結果

問題 No.2576 LCM Pattern
ユーザー siro53siro53
提出日時 2023-12-04 00:53:29
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 5,149 bytes
コンパイル時間 2,608 ms
コンパイル使用メモリ 208,392 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-26 22:36:03
合計ジャッジ時間 3,212 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 2 ms
5,376 KB
testcase_19 AC 2 ms
5,376 KB
testcase_20 AC 2 ms
5,376 KB
testcase_21 AC 2 ms
5,376 KB
testcase_22 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "combined.cpp"
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
template <class T> inline bool chmax(T &a, T b) {
    if(a < b) {
        a = b;
        return 1;
    }
    return 0;
}
template <class T> inline bool chmin(T &a, T b) {
    if(a > b) {
        a = b;
        return 1;
    }
    return 0;
}
#ifdef DEBUG
template <class T, class U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
    os << '(' << p.first << ',' << p.second << ')';
    return os;
}
template <class T> ostream &operator<<(ostream &os, const vector<T> &v) {
    os << '{';
    for(int i = 0; i < (int)v.size(); i++) {
        if(i) { os << ','; }
        os << v[i];
    }
    os << '}';
    return os;
}
void debugg() { cerr << endl; }
template <class T, class... Args> void debugg(const T &x, const Args &...args) {
    cerr << " " << x;
    debugg(args...);
}
#define debug(...)                                                             \
    cerr << __LINE__ << " [" << #__VA_ARGS__ << "]: ", debugg(__VA_ARGS__)
#define dump(x) cerr << __LINE__ << " " << #x << " = " << (x) << endl
#else
#define debug(...) (void(0))
#define dump(x) (void(0))
#endif

struct Setup {
    Setup() {
        cin.tie(0);
        ios::sync_with_stdio(false);
        cout << fixed << setprecision(15);
    }
} __Setup;

using ll = long long;
#define OVERLOAD3(_1, _2, _3, name, ...) name
#define ALL(v) (v).begin(), (v).end()
#define RALL(v) (v).rbegin(), (v).rend()
#define REP1(i, n) for(int i = 0; i < int(n); i++)
#define REP2(i, a, b) for(int i = (a); i < int(b); i++)
#define REP(...) OVERLOAD3(__VA_ARGS__, REP2, REP1)(__VA_ARGS__)
#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())
#define REVERSE(v) reverse(ALL(v))
#define SZ(v) ((int)(v).size())
const int INF = 1 << 30;
const ll LLINF = 1LL << 60;
constexpr int MOD = 1000000007;
constexpr int MOD2 = 998244353;
const int dx[4] = {1, 0, -1, 0};
const int dy[4] = {0, 1, 0, -1};

void Case(int i) { cout << "Case #" << i << ": "; }
int popcount(int x) { return __builtin_popcount(x); }
ll popcount(ll x) { return __builtin_popcountll(x); }
#pragma endregion Macros

#line 2 "/Users/siro53/kyo-pro/compro_library/math/prime-factor.hpp"

#line 4 "/Users/siro53/kyo-pro/compro_library/math/prime-factor.hpp"

template <typename T = int> std::map<T, int> prime_factor(T n) {
    static_assert(std::is_integral<T>::value == true, "type 'T' should be integer.");
    std::map<T, int> ret;
    for(T i = 2; i * i <= n; i++) {
        if(n % i == 0) {
            int cnt = 0;
            while(n % i == 0) {
                n /= i;
                cnt++;
            }
            ret[i] = cnt;
        }
    }
    if(n != 1) ret[n] = 1;
    return ret;
}
#line 2 "/Users/siro53/kyo-pro/compro_library/modint/modint.hpp"

#line 6 "/Users/siro53/kyo-pro/compro_library/modint/modint.hpp"

template <int mod> class ModInt {
  public:
    ModInt() : x(0) {}
    ModInt(long long y)
        : x(y >= 0 ? y % umod() : (umod() - (-y) % umod()) % umod()) {}
    unsigned int val() const { return x; }
    ModInt &operator+=(const ModInt &p) {
        if((x += p.x) >= umod()) x -= umod();
        return *this;
    }
    ModInt &operator-=(const ModInt &p) {
        if((x += umod() - p.x) >= umod()) x -= umod();
        return *this;
    }
    ModInt &operator*=(const ModInt &p) {
        x = (unsigned int)(1ULL * x * p.x % umod());
        return *this;
    }
    ModInt &operator/=(const ModInt &p) {
        *this *= p.inv();
        return *this;
    }
    ModInt operator-() const { return ModInt(-(long long)x); }
    ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
    ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
    ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
    ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
    bool operator==(const ModInt &p) const { return x == p.x; }
    bool operator!=(const ModInt &p) const { return x != p.x; }
    ModInt inv() const {
        long long a = x, b = mod, u = 1, v = 0, t;
        while(b > 0) {
            t = a / b;
            std::swap(a -= t * b, b);
            std::swap(u -= t * v, v);
        }
        return ModInt(u);
    }
    ModInt pow(unsigned long long n) const {
        ModInt ret(1), mul(x);
        while(n > 0) {
            if(n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }
    friend std::ostream &operator<<(std::ostream &os, const ModInt &p) {
        return os << p.x;
    }
    friend std::istream &operator>>(std::istream &is, ModInt &a) {
        long long t;
        is >> t;
        a = ModInt<mod>(t);
        return (is);
    }
    static constexpr int get_mod() { return mod; }

  private:
    unsigned int x;
    static constexpr unsigned int umod() { return mod; }
};
#line 78 "combined.cpp"
using mint = ModInt<MOD2>;

int main() {
    int N, M;
    cin >> N >> M;
    auto mp = prime_factor<int>(M);
    mint ans = 1;
    for(const auto& [p, e] : mp) {
        ans *= mint(e+1).pow(N) - mint(e).pow(N);
    }
    cout << ans << endl;
}
0