結果
問題 | No.2576 LCM Pattern |
ユーザー | shobonvip |
提出日時 | 2023-12-04 15:16:10 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 4,681 bytes |
コンパイル時間 | 5,402 ms |
コンパイル使用メモリ | 274,520 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-26 23:01:33 |
合計ジャッジ時間 | 5,336 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 1 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 1 ms
5,376 KB |
testcase_16 | AC | 1 ms
5,376 KB |
testcase_17 | AC | 1 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 1 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
ソースコード
#include<bits/stdc++.h> using namespace std; //* ATCODER #include<atcoder/all> using namespace atcoder; typedef modint998244353 mint; //*/ /* BOOST MULTIPRECISION #include<boost/multiprecision/cpp_int.hpp> using namespace boost::multiprecision; //*/ typedef long long ll; #define rep(i, s, n) for (int i = (int)(s); i < (int)(n); i++) #define rrep(i, s, n) for (int i = (int)(n)-1; i >= (int)(s); i--) template <typename T> bool chmin(T &a, const T &b) { if (a <= b) return false; a = b; return true; } template <typename T> bool chmax(T &a, const T &b) { if (a >= b) return false; a = b; return true; } template <typename T> T max(vector<T> &a){ assert(!a.empty()); T ret = a[0]; for (int i=0; i<(int)a.size(); i++) chmax(ret, a[i]); return ret; } template <typename T> T min(vector<T> &a){ assert(!a.empty()); T ret = a[0]; for (int i=0; i<(int)a.size(); i++) chmin(ret, a[i]); return ret; } template <typename T> T sum(vector<T> &a){ T ret = 0; for (int i=0; i<(int)a.size(); i++) ret += a[i]; return ret; } // Fast Factorization // https://judge.yosupo.jp/submission/38126 // !!! CHANGED THE PRIMARY TEST !!! typedef unsigned int uint; struct Mint { uint64_t n; static uint64_t mod, inv, r2; Mint() : n(0) { } Mint(const uint64_t &x) : n(init(x)) { } static uint64_t init(const uint64_t &w) { return reduce(__uint128_t(w) * r2); } static void set_mod(const uint64_t &m) { mod = inv = m; for(int i = 0; i < 5; i++) inv *= 2 - inv * m; r2 = -__uint128_t(m) % m; } static uint64_t reduce(const __uint128_t &x) { uint64_t y = uint64_t(x >> 64) - uint64_t((__uint128_t(uint64_t(x) * inv) * mod) >> 64); return int64_t(y) < 0 ? y + mod : y; } Mint& operator+= (const Mint &x) { n += x.n - mod; if(int64_t(n) < 0) n += mod; return *this; } Mint& operator+ (const Mint &x) const { return Mint(*this) += x; } Mint& operator*= (const Mint &x) { n = reduce(__uint128_t(n) * x.n); return *this; } Mint& operator* (const Mint &x) const { return Mint(*this) *= x; } uint64_t val() const { return reduce(n); } }; uint64_t Mint::mod, Mint::inv, Mint::r2; bool suspect(const uint64_t &a, const uint64_t &s, uint64_t d, const uint64_t &n) { if(Mint::mod != n) Mint::set_mod(n); Mint x(1), xx(a), o(x), m(n - 1); while(d > 0) { if(d & 1) x *= xx; xx *= xx; d >>= 1; } if(x.n == o.n) return true; for(uint r = 0; r < s; r++) { if(x.n == m.n) return true; x *= x; } return false; } bool is_prime(const uint64_t &n) { if(n <= 1 || (n > 2 && (~n & 1))) return false; uint64_t d = n - 1, s = 0; while(~d & 1) s++, d >>= 1; static const uint64_t a_big[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; static const uint64_t a_smo[] = {2, 7, 61}; if(n < 4759123141LL) { for(auto &&p : a_smo) { if(p >= n) break; if(!suspect(p, s, d, n)) return false; } } else { for(auto &&p : a_big) { if(p >= n) break; if(!suspect(p, s, d, n)) return false; } } return true; } uint64_t rho_pollard(const uint64_t &n) { if(~n & 1) return 2u; static random_device rng; uniform_int_distribution<uint64_t> rr(1, n - 1); if(Mint::mod != n) Mint::set_mod(n); for(;;) { uint64_t c_ = rr(rng), g = 1, r = 1, m = 500; Mint y(rr(rng)), xx(0), c(c_), ys(0), q(1); while(g == 1) { xx.n = y.n; for(uint i = 1; i <= r; i++) y *= y, y += c; uint64_t k = 0; g = 1; while(k < r && g == 1) { for(uint i = 1; i <= (m > (r - k) ? (r - k) : m); i++) { ys.n = y.n; y *= y; y += c; uint64_t xxx = xx.val(), yyy = y.val(); q *= Mint(xxx > yyy ? xxx - yyy : yyy - xxx); } g = __gcd<uint64_t>(q.val(), n); k += m; } r *= 2; } if(g == n) g = 1; while(g == 1) { ys *= ys; ys += c; uint64_t xxx = xx.val(), yyy = ys.val(); g = __gcd<uint64_t>(xxx > yyy ? xxx - yyy : yyy - xxx, n); } if(g != n && is_prime(g)) return g; } assert(69 == 420); } template <typename T> vector<T> inter_factor(const T &n) { if(n < 2) return { }; if(is_prime(n)) return {n}; T d = rho_pollard(static_cast<uint64_t>(n)); vector<T> l = inter_factor(d), r = inter_factor(n / d); l.insert(l.end(), r.begin(), r.end()); return l; } template <typename T> vector<T> factor(T n) { vector<T> f1; for(uint i = 2; i < 100; i += (i & 1) + 1) while(n % i == 0) f1.push_back(i), n /= i; vector<T> f2 = inter_factor(n); f1.insert(f1.end(), f2.begin(), f2.end()); sort(f1.begin(), f1.end()); return f1; } int main(){ int n; cin >> n; int m; cin >> m; vector<int> fact = factor(m); map<int,int> pf; for (int i: fact){ pf[i]++; } mint ans = 1; for (auto [p,c]: pf){ mint tmp = mint(c + 1).pow(n) - mint(c).pow(n); ans *= tmp; } cout << ans.val() << '\n'; }