結果
問題 | No.922 東北きりきざむたん |
ユーザー | miyo2580 |
提出日時 | 2023-12-04 22:50:59 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 226 ms / 2,000 ms |
コード長 | 9,624 bytes |
コンパイル時間 | 3,520 ms |
コンパイル使用メモリ | 242,108 KB |
実行使用メモリ | 63,980 KB |
最終ジャッジ日時 | 2024-09-26 23:18:47 |
合計ジャッジ時間 | 7,722 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 42 ms
6,912 KB |
testcase_10 | AC | 27 ms
5,376 KB |
testcase_11 | AC | 39 ms
6,144 KB |
testcase_12 | AC | 9 ms
5,376 KB |
testcase_13 | AC | 9 ms
5,376 KB |
testcase_14 | AC | 57 ms
8,704 KB |
testcase_15 | AC | 3 ms
5,376 KB |
testcase_16 | AC | 113 ms
14,700 KB |
testcase_17 | AC | 119 ms
16,052 KB |
testcase_18 | AC | 118 ms
13,604 KB |
testcase_19 | AC | 116 ms
15,232 KB |
testcase_20 | AC | 118 ms
15,416 KB |
testcase_21 | AC | 113 ms
10,844 KB |
testcase_22 | AC | 115 ms
10,512 KB |
testcase_23 | AC | 213 ms
31,468 KB |
testcase_24 | AC | 226 ms
32,740 KB |
testcase_25 | AC | 183 ms
33,128 KB |
testcase_26 | AC | 188 ms
33,004 KB |
testcase_27 | AC | 183 ms
33,004 KB |
testcase_28 | AC | 20 ms
5,376 KB |
testcase_29 | AC | 201 ms
63,980 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define repd(i,a,b) for (ll i=(a);i<(b);i++) #define rep(i,n) repd(i,0,n) #define all(x) (x).begin(),(x).end() template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } typedef long long ll; typedef pair<ll,ll> P; typedef vector<ll> vec; using Graph = vector<vector<ll>>; const long long INF = 1LL<<60; const long long MOD = 1000000007; //https://nyaannyaan.github.io/library/graph/graph-template.hpp template <typename T> struct edge { int src, to; T cost; edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {} edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {} edge &operator=(const int &x) { to = x; return *this; } operator int() const { return to; } }; template <typename T> using Edges = vector<edge<T>>; template <typename T> using WeightedGraph = vector<Edges<T>>; using UnweightedGraph = vector<vector<int>>; // Input of (Unweighted) Graph UnweightedGraph graph(int N, int M = -1, bool is_directed = false, bool is_1origin = true) { UnweightedGraph g(N); if (M == -1) M = N - 1; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; if (is_1origin) x--, y--; g[x].push_back(y); if (!is_directed) g[y].push_back(x); } return g; } // Input of Weighted Graph template <typename T> WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false, bool is_1origin = true) { WeightedGraph<T> g(N); if (M == -1) M = N - 1; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; cin >> c; if (is_1origin) x--, y--; g[x].emplace_back(x, y, c); if (!is_directed) g[y].emplace_back(y, x, c); } return g; } // Input of Edges template <typename T> Edges<T> esgraph(int N, int M, int is_weighted = true, bool is_1origin = true) { Edges<T> es; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; if (is_weighted) cin >> c; else c = 1; if (is_1origin) x--, y--; es.emplace_back(x, y, c); } return es; } // Input of Adjacency Matrix template <typename T> vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true, bool is_directed = false, bool is_1origin = true) { vector<vector<T>> d(N, vector<T>(N, INF)); for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; if (is_weighted) cin >> c; else c = 1; if (is_1origin) x--, y--; d[x][y] = c; if (!is_directed) d[y][x] = c; } return d; } /** * @brief グラフテンプレート * @docs docs/graph/graph-template.md */ //https://nyaannyaan.github.io/library/tree/rerooting.hpp // Rerooting // f1(c1, c2) ... merge value of child node // f2(memo[i], chd, par) ... return value from child node to parent node // memo[i] ... result of subtree rooted i // dp[i] ... result of tree rooted i template <typename T, typename G, typename F1, typename F2> struct Rerooting { const G &g; const F1 f1; const F2 f2; vector<T> memo, dp; T I; Rerooting(const G &_g, const F1 _f1, const F2 _f2, const T &I_) : g(_g), f1(_f1), f2(_f2), memo(g.size(), I_), dp(g.size(), I_), I(I_) { dfs(0, -1); efs(0, -1, I); } const T &operator[](int i) const { return dp[i]; } void dfs(int cur, int par) { for (auto &dst : g[cur]) { if (dst == par) continue; dfs(dst, cur); memo[cur] = f1(memo[cur], f2(memo[dst], dst, cur)); } } void efs(int cur, int par, const T &pval) { // get cumulative sum vector<T> buf; for (auto dst : g[cur]) { if (dst == par) continue; buf.push_back(f2(memo[dst], dst, cur)); } vector<T> head(buf.size() + 1), tail(buf.size() + 1); head[0] = tail[buf.size()] = I; for (int i = 0; i < (int)buf.size(); i++) head[i + 1] = f1(head[i], buf[i]); for (int i = (int)buf.size() - 1; i >= 0; i--) tail[i] = f1(tail[i + 1], buf[i]); // update dp[cur] = par == -1 ? head.back() : f1(pval, head.back()); // propagate int idx = 0; for (auto &dst : g[cur]) { if (dst == par) continue; efs(dst, cur, f2(f1(pval, f1(head[idx], tail[idx + 1])), cur, dst)); idx++; } } }; /** * @brief Rerooting(全方位木DP) * @docs docs/tree/rerooting.md */ struct UnionFind { vector<int> par; // par[i]:iの親の番号 (例) par[3] = 2 : 3の親が2 UnionFind(int N = 0) : par(N, -1) {} //最初は全てが根であるとして初期化 int root(int x) { // データxが属する木の根を再帰で得る:root(x) = {xの木の根} if (par[x] < 0) return x; return par[x] = root(par[x]); } bool unite(int x, int y) { // xとyの木を併合 x = root(x); //xの根をrx y = root(y); //yの根をry if (x == y) return false; //xとyの根が同じ(=同じ木にある)時はそのまま if (par[x] > par[y])swap(x, y);//xとyの根が同じでない(=同じ木にない)時:xの根rxをyの根ryにつける par[x] += par[y]; par[y] = x; return true; } bool same(int x, int y) { // 2つのデータx, yが属する木が同じならtrueを返す int rx = root(x); int ry = root(y); return rx == ry; } int size(int x) { return -par[root(x)]; } }; /* LCA(G, root): 木 G に対する根を root として Lowest Common Ancestor を求める構造体 query(u,v): u と v の LCA を求める。計算量 O(logn) 前処理: O(nlogn)時間, O(nlogn)空間 */ struct LCA { vector<vector<int>> parent; // parent[k][u]:= u の 2^k 先の親 vector<int> dist; // root からの距離 LCA(const Graph& G, int root) { init(G, root); } // 初期化 void init(const Graph& G, int root) { int V = G.size(); int K = 1; while ((1 << K) < V) K++; //KはK>=log2(V)を満たす最小の整数 parent.assign(K, vector<int>(V, -1)); dist.assign(V, -1); dfs(G, root, -1, 0); for (int k = 0; k + 1 < K; k++) { for (int v = 0; v < V; v++) { if (parent[k][v] < 0) { parent[k + 1][v] = -1; } else { parent[k + 1][v] = parent[k][parent[k][v]]; } } } } // 根からの距離と1つ先の頂点を求める void dfs(const Graph& G, int v, int p, int d) { parent[0][v] = p; dist[v] = d; for (auto e : G[v]) { if (e!= p) dfs(G, e, v, d + 1); } } int query(int u, int v) { if (dist[u] < dist[v]) swap(u, v); // u の方が深いとする int K = parent.size(); // LCA までの距離を同じにする for (int k = 0; k < K; k++) { if ((dist[u] - dist[v]) >> k & 1) { u = parent[k][u]; } } // 二分探索で LCA を求める if (u == v) return u; for (int k = K - 1; k >= 0; k--) { if (parent[k][u] != parent[k][v]) { u = parent[k][u]; v = parent[k][v]; } } return parent[0][u]; } }; template <typename T> vector<T> compress(vector<T> &X) { // ソートした結果を vals に vector<T> vals = X; sort(vals.begin(), vals.end()); // 隣り合う重複を削除(unique), 末端のゴミを削除(erase) vals.erase(unique(vals.begin(), vals.end()), vals.end()); // 各要素ごとに二分探索で位置を求める for (int i = 0; i < (int)X.size(); i++) { X[i] = lower_bound(vals.begin(), vals.end(), X[i]) - vals.begin(); } return vals; } int main() { ios::sync_with_stdio(false); cin.tie(0); ll n,m,q; cin>>n>>m>>q; UnionFind t(n); vector<P> memo(m); rep(i,m){ ll a,b; cin>>a>>b; a--;b--; memo[i]={a,b}; t.unite(a,b); } map<ll,vector<P>> mp; rep(i,m){ auto[x,y]=memo[i]; mp[t.root(x)].push_back({x,y}); } map<ll,vector<P>> mp2; vec cnt(n); rep(i,q){ ll a,b; cin>>a>>b; a--;b--; if(t.same(a,b))mp2[t.root(a)].push_back({a,b}); else{ cnt[a]++; cnt[b]++; } } ll ans=0; for(auto[_,V]:mp){ vec v; rep(i,V.size()){ auto[x,y]=V[i]; v.push_back(x); v.push_back(y); } vec u=compress(v); ll sz=V.size()+1; Graph g(sz); rep(i,v.size()/2){ ll x=v[2*i]; ll y=v[2*i+1]; g[x].push_back(y); g[y].push_back(x); } LCA lca(g,0); vector<P> U=mp2[_]; for(auto[x,y]:U){ x=lower_bound(all(u),x)-u.begin(); y=lower_bound(all(u),y)-u.begin(); ll z=lca.query(x,y); ans+=abs(lca.dist[x]-lca.dist[z])+abs(lca.dist[y]-lca.dist[z]); } vec now(sz); rep(i,u.size()){ now[i]=cnt[u[i]]; } auto f1=[&](P x,P y){ auto[a,b]=x; auto[c,d]=y; a+=c; b+=d; return P(a,b); }; auto f2=[&](P x,ll c,ll p){ auto[a,b]=x; b+=now[c]; a+=b; return P(a,b); }; Rerooting<P,decltype(g),decltype(f1),decltype(f2)> dp(g,f1,f2,P(0,0)); ll add=INF; for(auto [X,Y]:dp.dp){ chmin(add,X); } ans+=add; } cout<<ans<<endl; return 0; }