結果
| 問題 |
No.2576 LCM Pattern
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-12-05 06:52:50 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 4,505 bytes |
| コンパイル時間 | 1,710 ms |
| コンパイル使用メモリ | 140,248 KB |
| 最終ジャッジ日時 | 2025-02-18 07:47:04 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 23 |
ソースコード
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdint>
#include <cstring>
#include <ctime>
#include <deque>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
template <typename T>
std::vector<T> get_divisors(T x, bool sorted = true) {
std::vector<T> res;
for (T i = 1; i <= x / i; i++)
if (x % i == 0) {
res.push_back(i);
if (i != x / i) res.push_back(x / i);
}
if (sorted) std::sort(res.begin(), res.end());
return res;
}
template <int mod>
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt &operator^=(long long p) { // quick_pow here:3
ModInt res = 1;
for (; p; p >>= 1) {
if (p & 1) res *= *this;
*this *= *this;
}
return *this = res;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
ModInt operator^(long long p) const { return ModInt(*this) ^= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
explicit operator int() const { return x; } // added by QCFium
ModInt operator=(const int p) {
x = p;
return ModInt(*this);
} // added by QCFium
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
a -= t * b;
std::swap(a, b);
u -= t * v;
std::swap(u, v);
}
return ModInt(u);
}
friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &p) {
return os << p.x;
}
friend std::istream &operator>>(std::istream &is, ModInt<mod> &a) {
long long x;
is >> x;
a = ModInt<mod>(x);
return (is);
}
};
using mint = ModInt<998244353>;
const int MOD = 998244353;
struct MComb {
std::vector<mint> fact;
std::vector<mint> inversed;
MComb(int n) { // O(n+log(mod))
fact = std::vector<mint>(n + 1, 1);
for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * mint(i);
inversed = std::vector<mint>(n + 1);
inversed[n] = fact[n] ^ (MOD - 2);
for (int i = n - 1; i >= 0; i--)
inversed[i] = inversed[i + 1] * mint(i + 1);
}
mint ncr(int n, int r) {
if (n < r) return 0;
return (fact[n] * inversed[r] * inversed[n - r]);
}
mint npr(int n, int r) { return (fact[n] * inversed[n - r]); }
mint nhr(int n, int r) {
assert(n + r - 1 < (int)fact.size());
return ncr(n + r - 1, r);
}
};
mint ncr(int n, int r) {
mint res = 1;
for (int i = n - r + 1; i <= n; i++) res *= i;
for (int i = 1; i <= r; i++) res /= i;
return res;
}
std::pair<std::vector<long long>, std::vector<int>> get_prime_factor_with_kinds(
long long n) {
std::vector<long long> prime_factors;
std::vector<int> cnt; // number of i_th factor
for (long long i = 2; i <= sqrt(n); i++) {
if (n % i == 0) {
prime_factors.push_back(i);
cnt.push_back(0);
while (n % i == 0) n /= i, cnt[(int)prime_factors.size() - 1]++;
}
}
if (n > 1) prime_factors.push_back(n), cnt.push_back(1);
assert(prime_factors.size() == cnt.size());
return {prime_factors, cnt};
}
void solve() {
long long n, m;
std::cin >> n >> m;
auto [p, cnt] = get_prime_factor_with_kinds(m);
std::unordered_map<long long, int> mp;
for (size_t i = 0; i < p.size(); i += 1) {
mp[p[i]] += cnt[i];
}
mint ans = 1;
for (auto [k, v] : mp) {
mint base = v + 1;
ans *= ((base ^ n) - ((base - 1) ^ n));
}
std::cout << ans << '\n';
}
int main() {
std::ios_base::sync_with_stdio(false);
std::cin.tie(nullptr);
int t = 1;
// std::cin >> t;
while (t--) {
solve();
}
}