結果
問題 | No.2576 LCM Pattern |
ユーザー | OnjoujiToki |
提出日時 | 2023-12-05 06:52:50 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 4,505 bytes |
コンパイル時間 | 1,826 ms |
コンパイル使用メモリ | 146,484 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-27 00:04:05 |
合計ジャッジ時間 | 2,662 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 1 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 1 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 1 ms
5,376 KB |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <cstdint> #include <cstring> #include <ctime> #include <deque> #include <iomanip> #include <iostream> #include <iterator> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <stack> #include <unordered_map> #include <unordered_set> template <typename T> std::vector<T> get_divisors(T x, bool sorted = true) { std::vector<T> res; for (T i = 1; i <= x / i; i++) if (x % i == 0) { res.push_back(i); if (i != x / i) res.push_back(x / i); } if (sorted) std::sort(res.begin(), res.end()); return res; } template <int mod> struct ModInt { int x; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt &operator^=(long long p) { // quick_pow here:3 ModInt res = 1; for (; p; p >>= 1) { if (p & 1) res *= *this; *this *= *this; } return *this = res; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator^(long long p) const { return ModInt(*this) ^= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } explicit operator int() const { return x; } // added by QCFium ModInt operator=(const int p) { x = p; return ModInt(*this); } // added by QCFium ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return ModInt(u); } friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &p) { return os << p.x; } friend std::istream &operator>>(std::istream &is, ModInt<mod> &a) { long long x; is >> x; a = ModInt<mod>(x); return (is); } }; using mint = ModInt<998244353>; const int MOD = 998244353; struct MComb { std::vector<mint> fact; std::vector<mint> inversed; MComb(int n) { // O(n+log(mod)) fact = std::vector<mint>(n + 1, 1); for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * mint(i); inversed = std::vector<mint>(n + 1); inversed[n] = fact[n] ^ (MOD - 2); for (int i = n - 1; i >= 0; i--) inversed[i] = inversed[i + 1] * mint(i + 1); } mint ncr(int n, int r) { if (n < r) return 0; return (fact[n] * inversed[r] * inversed[n - r]); } mint npr(int n, int r) { return (fact[n] * inversed[n - r]); } mint nhr(int n, int r) { assert(n + r - 1 < (int)fact.size()); return ncr(n + r - 1, r); } }; mint ncr(int n, int r) { mint res = 1; for (int i = n - r + 1; i <= n; i++) res *= i; for (int i = 1; i <= r; i++) res /= i; return res; } std::pair<std::vector<long long>, std::vector<int>> get_prime_factor_with_kinds( long long n) { std::vector<long long> prime_factors; std::vector<int> cnt; // number of i_th factor for (long long i = 2; i <= sqrt(n); i++) { if (n % i == 0) { prime_factors.push_back(i); cnt.push_back(0); while (n % i == 0) n /= i, cnt[(int)prime_factors.size() - 1]++; } } if (n > 1) prime_factors.push_back(n), cnt.push_back(1); assert(prime_factors.size() == cnt.size()); return {prime_factors, cnt}; } void solve() { long long n, m; std::cin >> n >> m; auto [p, cnt] = get_prime_factor_with_kinds(m); std::unordered_map<long long, int> mp; for (size_t i = 0; i < p.size(); i += 1) { mp[p[i]] += cnt[i]; } mint ans = 1; for (auto [k, v] : mp) { mint base = v + 1; ans *= ((base ^ n) - ((base - 1) ^ n)); } std::cout << ans << '\n'; } int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(nullptr); int t = 1; // std::cin >> t; while (t--) { solve(); } }