結果
| 問題 |
No.2578 Jewelry Store
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-12-06 00:17:17 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 7,710 bytes |
| コンパイル時間 | 1,358 ms |
| コンパイル使用メモリ | 129,388 KB |
| 実行使用メモリ | 404,524 KB |
| 最終ジャッジ日時 | 2024-09-27 00:40:50 |
| 合計ジャッジ時間 | 7,654 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 3 TLE * 1 -- * 50 |
ソースコード
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;
template<class T> vector<T> merge(const vector<T> &a, const vector<T> &b) {
vector<T> c(a.size() + b.size());
std::merge(a.begin(), a.end(), b.begin(), b.end(), c.begin());
return c;
}
template<class T> T power(T a, Int e, T m) {
T b = 1;
for (; e; e >>= 1) {
if (e & 1) b = (b * a) % m;
a = (a * a) % m;
}
return b;
}
Int gcd(Int a, Int b) {
if (a < 0) a = -a;
if (b < 0) b = -b;
if (a == 0) return b;
if (b == 0) return a;
const int s = __builtin_ctzll(a | b);
a >>= __builtin_ctzll(a);
do {
b >>= __builtin_ctzll(b);
if (a > b) std::swap(a, b);
b -= a;
} while (b);
return a << s;
}
// Checks if n is a prime using Miller-Rabin test
bool isPrime(Int n) {
if (n <= 1 || n % 2 == 0) return (n == 2);
const int s = __builtin_ctzll(n - 1);
const Int d = (n - 1) >> s;
// http://miller-rabin.appspot.com/
for (const Int base : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
__int128 a = base % n;
if (a == 0) continue;
a = power<__int128>(a, d, n);
if (a == 1 || a == n - 1) continue;
bool ok = false;
for (int i = 0; i < s - 1; ++i) {
a = (a * a) % n;
if (a == n - 1) {
ok = true;
break;
}
}
if (!ok) return false;
}
return true;
}
// Factorize n using Pollard's rho algorithm
vector<Int> factorize(Int n) {
static constexpr int BLOCK = 256;
if (n <= 1) return {};
if (isPrime(n)) return {n};
if (n % 2 == 0) return merge({2}, factorize(n / 2));
for (Int c = 2; ; ++c) {
Int x, y = 2, y0, z = 1, d = 1;
for (int l = 1; d == 1; l <<= 1) {
x = y;
for (int i = 0; i < l; ++i) y = (static_cast<__int128>(y) * y + c) % n;
for (int i = 0; i < l; i += BLOCK) {
y0 = y;
for (int j = 0; j < BLOCK && j < l - i; ++j) {
y = (static_cast<__int128>(y) * y + c) % n;
z = (static_cast<__int128>(z) * (y - x)) % n;
}
if ((d = gcd(z, n)) != 1) break;
}
}
if (d == n) {
for (y = y0; ; ) {
y = (static_cast<__int128>(y) * y + c) % n;
if ((d = gcd(y - x, n)) != 1) break;
}
}
if (d != n) return merge(factorize(d), factorize(n / d));
}
}
int T;
Int M;
int N;
Mint B, C, D;
vector<Int> A;
int main() {
for (; ~scanf("%d%lld", &T, &M); ) {
vector<Int> ps;
vector<int> es;
{
const auto res = factorize(M);
for (int i = 0, j = 0; i < (int)res.size(); ++i) {
for (; j < (int)res.size() && res[i] == res[j]; ++j) {}
ps.push_back(res[i]);
es.push_back(j - i);
}
}
const int len = ps.size();
// cerr<<"ps = "<<ps<<", es = "<<es<<endl;
vector<Int> prods(1 << len);
prods[0] = 1;
for (int k = 0; k < len; ++k) {
for (int h = 0; h < 1 << k; ++h) {
prods[h | 1 << k] = prods[h] * ps[k];
}
}
map<Int, int> toH;
for (int h = 0; h < 1 << len; ++h) {
toH[prods[h]] = h;
}
vector<Mint> fs(1 << len);
for (int t = 0; t < T; ++t) {
scanf("%d%u%u%u", &N, &B.x, &C.x, &D.x);
A.resize(N);
for (int i = 0; i < N; ++i) {
scanf("%lld", &A[i]);
}
fill(fs.begin(), fs.end(), 1);
Mint w = B;
for (int i = 0; i < N; ++i) {
if (M % A[i] == 0) {
const int h = toH[__gcd(M / A[i], prods.back())];
fs[h] *= (1 + w);
}
w = C * w + D;
}
// cerr<<"fs = "<<fs<<endl;
for (int k = 0; k < len; ++k) {
// for (int h = 0; h < 1 << len; ++h) if (!(h & 1 << k)) {
for (int g = 0; g < 1 << len; g += (1 << (k + 1))) for (int h = g; h < g + (1 << k); ++h) {
fs[h] *= fs[h | 1 << k];
}
}
// cerr<<"fs = "<<fs<<endl;
Mint ans = 0;
for (int h = 0; h < 1 << len; ++h) {
ans += (__builtin_parity(h)?-1:+1) * fs[h];
}
if (M == 1) {
ans -= 1;
}
printf("%u\n", ans.x);
}
}
return 0;
}