結果

問題 No.2578 Jewelry Store
ユーザー akakimidoriakakimidori
提出日時 2023-12-06 00:20:36
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 571 ms / 3,500 ms
コード長 26,346 bytes
コンパイル時間 17,120 ms
コンパイル使用メモリ 379,948 KB
実行使用メモリ 11,008 KB
最終ジャッジ日時 2024-09-27 00:41:39
合計ジャッジ時間 23,945 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 5 ms
5,248 KB
testcase_03 AC 3 ms
5,248 KB
testcase_04 AC 12 ms
5,376 KB
testcase_05 AC 4 ms
5,376 KB
testcase_06 AC 5 ms
5,376 KB
testcase_07 AC 13 ms
5,376 KB
testcase_08 AC 4 ms
5,376 KB
testcase_09 AC 13 ms
5,376 KB
testcase_10 AC 24 ms
5,376 KB
testcase_11 AC 4 ms
5,376 KB
testcase_12 AC 4 ms
5,376 KB
testcase_13 AC 4 ms
5,376 KB
testcase_14 AC 3 ms
5,376 KB
testcase_15 AC 3 ms
5,376 KB
testcase_16 AC 23 ms
5,376 KB
testcase_17 AC 12 ms
5,376 KB
testcase_18 AC 3 ms
5,376 KB
testcase_19 AC 8 ms
5,376 KB
testcase_20 AC 13 ms
5,376 KB
testcase_21 AC 13 ms
5,376 KB
testcase_22 AC 5 ms
5,376 KB
testcase_23 AC 8 ms
5,376 KB
testcase_24 AC 5 ms
5,376 KB
testcase_25 AC 6 ms
5,376 KB
testcase_26 AC 5 ms
5,376 KB
testcase_27 AC 126 ms
7,040 KB
testcase_28 AC 181 ms
7,040 KB
testcase_29 AC 169 ms
7,040 KB
testcase_30 AC 203 ms
7,168 KB
testcase_31 AC 139 ms
7,168 KB
testcase_32 AC 83 ms
7,936 KB
testcase_33 AC 109 ms
7,168 KB
testcase_34 AC 136 ms
9,604 KB
testcase_35 AC 34 ms
5,376 KB
testcase_36 AC 115 ms
9,332 KB
testcase_37 AC 65 ms
7,552 KB
testcase_38 AC 78 ms
7,552 KB
testcase_39 AC 66 ms
7,680 KB
testcase_40 AC 72 ms
7,424 KB
testcase_41 AC 71 ms
7,424 KB
testcase_42 AC 65 ms
7,424 KB
testcase_43 AC 93 ms
7,168 KB
testcase_44 AC 49 ms
7,552 KB
testcase_45 AC 82 ms
7,424 KB
testcase_46 AC 67 ms
7,296 KB
testcase_47 AC 341 ms
7,424 KB
testcase_48 AC 186 ms
11,008 KB
testcase_49 AC 571 ms
7,296 KB
testcase_50 AC 481 ms
5,376 KB
testcase_51 AC 55 ms
6,940 KB
testcase_52 AC 243 ms
7,040 KB
testcase_53 AC 15 ms
5,376 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: type alias `Map` is never used
   --> src/main.rs:940:6
    |
940 | type Map<K, V> = BTreeMap<K, V>;
    |      ^^^
    |
    = note: `#[warn(dead_code)]` on by default

warning: type alias `Set` is never used
   --> src/main.rs:941:6
    |
941 | type Set<T> = BTreeSet<T>;
    |      ^^^

warning: type alias `Deque` is never used
   --> src/main.rs:942:6
    |
942 | type Deque<T> = VecDeque<T>;
    |      ^^^^^

warning: variable `D` should have a snake case name
   --> src/main.rs:782:9
    |
782 |     let D = if n % 4 == 1 { 2 * n } else { n };
    |         ^ help: convert the identifier to snake case: `d`
    |
    = note: `#[warn(non_snake_case)]` on by default

warning: variable `sqrt_D` should have a snake case name
   --> src/main.rs:783:10
    |
783 |     let (sqrt_D, mut Q) = D.isqrt_rem();
    |          ^^^^^^ help: convert the identifier to snake case: `sqrt_d`

warning: variable `Q` should have a snake case name
   --> src/main.rs:783:22
    |
783 |     let (sqrt_D, mut Q) = D.isqrt_rem();
    |                      ^ help: convert the identifier to snake case: `q`

warning: variable `Q_hat` should have a snake case name
   --> src/main.rs:784:13
    |
784 |     let mut Q_hat = 1_u64;
    |             ^^^^^ help: convert the identifier to snake case: `q_hat`

warning: variable `P` should have a snake case name
   --> src/main.rs:785:13
    |
785 |     let mut P = sqrt_D;
    |             ^ help: convert the identifier to snake case: `p`

warning: variable `L` should have a snake case name
   --> src/main.rs:786:9
    |
786 |     let L = (2.0 * (2.0 * (D as f64).sqrt()).sqrt()) as u64;
    |         ^ help: convert the identifier to snake case: `l`

warning: variable `B` should have a snake case name
   --> src/main.rs:787:9
    |
787 |     let B = 2 * L;
    |         ^ help: convert the identifier to snake case: `b`

warning: variable `P_prime` should have a snake case name
   --> src/main.rs:798:13
    |
798 |         let P_prime = q * Q -

ソースコード

diff #

// ---------- begin bitwise transform ----------
pub fn bitwise_transform<T, F>(a: &mut [T], mut f: F)
where
    F: FnMut(&mut T, &mut T)
{
    let n = a.len().trailing_zeros() as usize;
    assert!(a.len() == 1 << n);
    for i in 0..n {
        for a in a.chunks_exact_mut(2 << i) {
            let (x, y) = a.split_at_mut(1 << i);
            for (x, y) in x.iter_mut().zip(y) {
                f(x, y);
            }
        }
    }
}
// ---------- end bitwise transform ----------

use std::ops::*;

// ---------- begin trait ----------
pub trait Zero: Sized + Add<Self, Output = Self> {
    fn zero() -> Self;
    fn is_zero(&self) -> bool;
}

pub trait One: Sized + Mul<Self, Output = Self> {
    fn one() -> Self;
    fn is_one(&self) -> bool;
}

pub trait Ring: Zero + One + Sub<Output = Self> {}

pub trait Field: Ring + Div<Output = Self> {}
// ---------- end trait ----------
// ---------- begin modint ----------
pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 {
    let mut t = 1;
    while n > 0 {
        if n & 1 == 1 {
            t = (t as u64 * r as u64 % m as u64) as u32;
        }
        r = (r as u64 * r as u64 % m as u64) as u32;
        n >>= 1;
    }
    t
}

pub const fn primitive_root(p: u32) -> u32 {
    let mut m = p - 1;
    let mut f = [1; 30];
    let mut k = 0;
    let mut d = 2;
    while d * d <= m {
        if m % d == 0 {
            f[k] = d;
            k += 1;
        }
        while m % d == 0 {
            m /= d;
        }
        d += 1;
    }
    if m > 1 {
        f[k] = m;
        k += 1;
    }
    let mut g = 1;
    while g < p {
        let mut ok = true;
        let mut i = 0;
        while i < k {
            ok &= pow_mod(g, (p - 1) / f[i], p) > 1;
            i += 1;
        }
        if ok {
            break;
        }
        g += 1;
    }
    g
}

pub const fn is_prime(n: u32) -> bool {
    if n <= 1 {
        return false;
    }
    let mut d = 2;
    while d * d <= n {
        if n % d == 0 {
            return false;
        }
        d += 1;
    }
    true
}

#[derive(Clone, Copy, PartialEq, Eq)]
pub struct ModInt<const M: u32>(u32);

impl<const M: u32> ModInt<{ M }> {
    const REM: u32 = {
        let mut t = 1u32;
        let mut s = !M + 1;
        let mut n = !0u32 >> 2;
        while n > 0 {
            if n & 1 == 1 {
                t = t.wrapping_mul(s);
            }
            s = s.wrapping_mul(s);
            n >>= 1;
        }
        t
    };
    const INI: u64 = ((1u128 << 64) % M as u128) as u64;
    const IS_PRIME: () = assert!(is_prime(M));
    const PRIMITIVE_ROOT: u32 = primitive_root(M);
    const ORDER: usize = 1 << (M - 1).trailing_zeros();
    const fn reduce(x: u64) -> u32 {
        let _ = Self::IS_PRIME;
        let b = (x as u32 * Self::REM) as u64;
        let t = x + b * M as u64;
        let mut c = (t >> 32) as u32;
        if c >= M {
            c -= M;
        }
        c as u32
    }
    const fn multiply(a: u32, b: u32) -> u32 {
        Self::reduce(a as u64 * b as u64)
    }
    pub const fn new(v: u32) -> Self {
        assert!(v < M);
        Self(Self::reduce(v as u64 * Self::INI))
    }
    pub const fn const_mul(&self, rhs: Self) -> Self {
        Self(Self::multiply(self.0, rhs.0))
    }
    pub const fn pow(&self, mut n: u64) -> Self {
        let mut t = Self::new(1);
        let mut r = *self;
        while n > 0 {
            if n & 1 == 1 {
                t = t.const_mul(r);
            }
            r = r.const_mul(r);
            n >>= 1;
        }
        t
    }
    pub const fn inv(&self) -> Self {
        assert!(self.0 != 0);
        self.pow(M as u64 - 2)
    }
    pub const fn get(&self) -> u32 {
        Self::reduce(self.0 as u64)
    }
    pub const fn zero() -> Self {
        Self::new(0)
    }
    pub const fn one() -> Self {
        Self::new(1)
    }
}

impl<const M: u32> Add for ModInt<{ M }> {
    type Output = Self;
    fn add(self, rhs: Self) -> Self::Output {
        let mut v = self.0 + rhs.0;
        if v >= M {
            v -= M;
        }
        Self(v)
    }
}

impl<const M: u32> Sub for ModInt<{ M }> {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self::Output {
        let mut v = self.0 - rhs.0;
        if self.0 < rhs.0 {
            v += M;
        }
        Self(v)
    }
}

impl<const M: u32> Mul for ModInt<{ M }> {
    type Output = Self;
    fn mul(self, rhs: Self) -> Self::Output {
        self.const_mul(rhs)
    }
}

impl<const M: u32> Div for ModInt<{ M }> {
    type Output = Self;
    fn div(self, rhs: Self) -> Self::Output {
        self * rhs.inv()
    }
}

impl<const M: u32> AddAssign for ModInt<{ M }> {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

impl<const M: u32> SubAssign for ModInt<{ M }> {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

impl<const M: u32> MulAssign for ModInt<{ M }> {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl<const M: u32> DivAssign for ModInt<{ M }> {
    fn div_assign(&mut self, rhs: Self) {
        *self = *self / rhs;
    }
}

impl<const M: u32> Neg for ModInt<{ M }> {
    type Output = Self;
    fn neg(self) -> Self::Output {
        if self.0 == 0 {
            self
        } else {
            Self(M - self.0)
        }
    }
}

impl<const M: u32> std::fmt::Display for ModInt<{ M }> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.get())
    }
}

impl<const M: u32> std::fmt::Debug for ModInt<{ M }> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.get())
    }
}

impl<const M: u32> std::str::FromStr for ModInt<{ M }> {
    type Err = std::num::ParseIntError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let val = s.parse::<u32>()?;
        Ok(ModInt::new(val))
    }
}

impl<const M: u32> From<usize> for ModInt<{ M }> {
    fn from(val: usize) -> ModInt<{ M }> {
        ModInt::new((val % M as usize) as u32)
    }
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<const MOD: u32> {
    fact: Vec<ModInt<MOD>>,
    ifact: Vec<ModInt<MOD>>,
    inv: Vec<ModInt<MOD>>,
}

impl<const MOD: u32> Precalc<MOD> {
    pub fn new(size: usize) -> Self {
        let mut fact = vec![ModInt::one(); size + 1];
        let mut ifact = vec![ModInt::one(); size + 1];
        let mut inv = vec![ModInt::one(); size + 1];
        for i in 2..=size {
            fact[i] = fact[i - 1] * ModInt::from(i);
        }
        ifact[size] = fact[size].inv();
        for i in (2..=size).rev() {
            inv[i] = ifact[i] * fact[i - 1];
            ifact[i - 1] = ifact[i] * ModInt::from(i);
        }
        Self { fact, ifact, inv }
    }
    pub fn fact(&self, n: usize) -> ModInt<MOD> {
        self.fact[n]
    }
    pub fn ifact(&self, n: usize) -> ModInt<MOD> {
        self.ifact[n]
    }
    pub fn inv(&self, n: usize) -> ModInt<MOD> {
        assert!(0 < n);
        self.inv[n]
    }
    pub fn perm(&self, n: usize, k: usize) -> ModInt<MOD> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[n - k]
    }
    pub fn binom(&self, n: usize, k: usize) -> ModInt<MOD> {
        if n < k {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[k] * self.ifact[n - k]
    }
}
// ---------- end precalc ----------

impl<const M: u32> Zero for ModInt<{ M }> {
    fn zero() -> Self {
        Self::zero()
    }
    fn is_zero(&self) -> bool {
        self.0 == 0
    }
}

impl<const M: u32> One for ModInt<{ M }> {
    fn one() -> Self {
        Self::one()
    }
    fn is_one(&self) -> bool {
        self.get() == 1
    }
}

impl<const M: u32> Ring for ModInt<{ M }> {}
impl<const M: u32> Field for ModInt<{ M }> {}

// ---------- begin array op ----------

struct NTTPrecalc<const M: u32> {
    sum_e: [ModInt<{ M }>; 30],
    sum_ie: [ModInt<{ M }>; 30],
}

impl<const M: u32> NTTPrecalc<{ M }> {
    const fn new() -> Self {
        let cnt2 = (M - 1).trailing_zeros() as usize;
        let root = ModInt::new(ModInt::<{ M }>::PRIMITIVE_ROOT);
        let zeta = root.pow((M - 1) as u64 >> cnt2);
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_e = [ModInt::zero(); 30];
        let mut sum_ie = [ModInt::zero(); 30];
        let mut e = zeta;
        let mut ie = e.inv();
        let mut i = cnt2;
        while i >= 2 {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e.const_mul(e);
            ie = ie.const_mul(ie);
            i -= 1;
        }
        let mut now = ModInt::one();
        let mut inow = ModInt::one();
        let mut i = 0;
        while i < cnt2 - 1 {
            sum_e[i] = es[i].const_mul(now);
            sum_ie[i] = ies[i].const_mul(inow);
            now = ies[i].const_mul(now);
            inow = es[i].const_mul(inow);
            i += 1;
        }
        Self { sum_e, sum_ie }
    }
}

struct NTTPrecalcHelper<const MOD: u32>;
impl<const MOD: u32> NTTPrecalcHelper<MOD> {
    const A: NTTPrecalc<MOD> = NTTPrecalc::new();
}

pub trait ArrayAdd {
    type Item;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayAdd for [T]
where
    T: Zero + Copy,
{
    type Item = T;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.add_assign(rhs);
        c
    }
}

pub trait ArrayAddAssign {
    type Item;
    fn add_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayAddAssign for [T]
where
    T: Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
    }
}

impl<T> ArrayAddAssign for Vec<T>
where
    T: Zero + Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().add_assign(rhs);
    }
}

pub trait ArraySub {
    type Item;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArraySub for [T]
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.sub_assign(rhs);
        c
    }
}

pub trait ArraySubAssign {
    type Item;
    fn sub_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArraySubAssign for [T]
where
    T: Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
    }
}

impl<T> ArraySubAssign for Vec<T>
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().sub_assign(rhs);
    }
}

pub trait ArrayDot {
    type Item;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayDot for [T]
where
    T: Mul<Output = T> + Copy,
{
    type Item = T;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        assert!(self.len() == rhs.len());
        self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
    }
}

pub trait ArrayDotAssign {
    type Item;
    fn dot_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayDotAssign for [T]
where
    T: MulAssign + Copy,
{
    type Item = T;
    fn dot_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() == rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
    }
}

pub trait ArrayMul {
    type Item;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayMul for [T]
where
    T: Zero + One + Copy,
{
    type Item = T;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.is_empty() || rhs.is_empty() {
            return vec![];
        }
        let mut res = vec![T::zero(); self.len() + rhs.len() - 1];
        for (i, a) in self.iter().enumerate() {
            for (res, b) in res[i..].iter_mut().zip(rhs.iter()) {
                *res = *res + *a * *b;
            }
        }
        res
    }
}

// transform でlen=1を指定すればNTTになる
pub trait ArrayConvolution {
    type Item;
    fn transform(&mut self, len: usize);
    fn inverse_transform(&mut self, len: usize);
    fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<const M: u32> ArrayConvolution for [ModInt<{ M }>] {
    type Item = ModInt<{ M }>;
    fn transform(&mut self, len: usize) {
        let f = self;
        let n = f.len();
        let k = (n / len).trailing_zeros() as usize;
        assert!(len << k == n);
        assert!(k <= ModInt::<{ M }>::ORDER);
        let pre = &NTTPrecalcHelper::<{ M }>::A;
        for ph in 1..=k {
            let p = len << (k - ph);
            let mut now = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y * now;
                    *x = l + r;
                    *y = l - r;
                }
                now *= pre.sum_e[(!i).trailing_zeros() as usize];
            }
        }
    }
    fn inverse_transform(&mut self, len: usize) {
        let f = self;
        let n = f.len();
        let k = (n / len).trailing_zeros() as usize;
        assert!(len << k == n);
        assert!(k <= ModInt::<{ M }>::ORDER);
        let pre = &NTTPrecalcHelper::<{ M }>::A;
        for ph in (1..=k).rev() {
            let p = len << (k - ph);
            let mut inow = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y;
                    *x = l + r;
                    *y = (l - r) * inow;
                }
                inow *= pre.sum_ie[(!i).trailing_zeros() as usize];
            }
        }
        let ik = ModInt::new(2).inv().pow(k as u64);
        for f in f.iter_mut() {
            *f *= ik;
        }
    }
    fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.len().min(rhs.len()) <= 32 {
            return self.mul(rhs);
        }
        const PARAM: usize = 10;
        let size = self.len() + rhs.len() - 1;
        let mut k = 0;
        while (size + (1 << k) - 1) >> k > PARAM {
            k += 1;
        }
        let len = (size + (1 << k) - 1) >> k;
        let mut f = vec![ModInt::zero(); len << k];
        let mut g = vec![ModInt::zero(); len << k];
        f[..self.len()].copy_from_slice(self);
        g[..rhs.len()].copy_from_slice(rhs);
        f.transform(len);
        g.transform(len);
        let mut buf = [ModInt::zero(); 2 * PARAM - 1];
        let buf = &mut buf[..(2 * len - 1)];
        let pre = &NTTPrecalcHelper::<{ M }>::A;
        let mut now = ModInt::one();
        for (i, (f, g)) in f
            .chunks_exact_mut(2 * len)
            .zip(g.chunks_exact(2 * len))
            .enumerate()
        {
            let mut r = now;
            for (f, g) in f.chunks_exact_mut(len).zip(g.chunks_exact(len)) {
                buf.fill(ModInt::zero());
                for (i, f) in f.iter().enumerate() {
                    for (buf, g) in buf[i..].iter_mut().zip(g.iter()) {
                        *buf = *buf + *f * *g;
                    }
                }
                f.copy_from_slice(&buf[..len]);
                for (f, buf) in f.iter_mut().zip(buf[len..].iter()) {
                    *f = *f + r * *buf;
                }
                r = -r;
            }
            now *= pre.sum_e[(!i).trailing_zeros() as usize];
        }
        f.inverse_transform(len);
        f.truncate(self.len() + rhs.len() - 1);
        f
    }
}
// ---------- end array op ----------

pub trait ModularArithmetic: Sized {
    fn add_mod(self, other: Self, m: Self) -> Self;
    fn sub_mod(self, other: Self, m: Self) -> Self;
    fn mul_mod(self, other: Self, m: Self) -> Self;
    fn div_mod(self, other: Self, m: Self) -> Option<Self>;
    fn inv_mod(self, m: Self) -> Option<Self>;
    fn pow_mod(self, exp: Self, m: Self) -> Self;
}
impl ModularArithmetic for u64 {
    fn add_mod(self, other: u64, m: u64) -> u64 {
        let value = self + other;
        if value >= m {
            value - m
        } else {
            value
        }
    }
    fn sub_mod(self, other: u64, m: u64) -> u64 {
        if self >= other {
            self - other
        } else {
            self + m - other
        }
    }
    fn mul_mod(self, other: u64, m: u64) -> u64 {
        //(self * other) % m
        ((self as u128 * other as u128) % m as u128) as u64
    }
    fn inv_mod(self, m: u64) -> Option<u64> {
        1.div_mod(self, m)
    }
    fn div_mod(self, other: u64, m: u64) -> Option<u64> {
        let mut x = (m, 0u64);
        let mut y = (other, 1u64);
        while y.0 != 0 {
            x.1 = x.1.wrapping_sub((x.0 / y.0).wrapping_mul(y.1));
            x.0 %= y.0;
            std::mem::swap(&mut x, &mut y);
        }
        if self % x.0 != 0 {
            None
        } else {
            Some((self / x.0).mul_mod(if x.1 >= m { x.1.wrapping_add(m) } else { x.1 }, m))
        }
    }
    fn pow_mod(self, mut exp: Self, m: Self) -> Self {
        let mut x = 1;
        let mut a = self;
        while exp > 0 {
            if exp % 2 == 1 {
                x = x.mul_mod(a, m);
            }
            a = a.mul_mod(a, m);
            exp >>= 1;
        }
        x
    }
}

pub trait MillerRabin {
    fn is_prime(self) -> bool;
}
impl MillerRabin for u64 {
    fn is_prime(self: u64) -> bool {
        if self <= 3 {
            return self == 2 || self == 3;
        }
        if self % 2 == 0 {
            return false;
        }
        let r = (self - 1).trailing_zeros();
        let d = (self - 1) >> r;

        for &a in &[2, 325, 9375, 28178, 450775, 9780504, 1795265022] {
            let a = a % self;
            if a == 0 {
                continue;
            }
            let mut x = a.pow_mod(d, self);
            if x == 1 || x == self - 1 {
                continue;
            }
            let mut i = r;
            while i > 0 {
                x = x.mul_mod(x, self);
                if x == 1 {
                    return false;
                } else if x == self - 1 {
                    break;
                }
                i -= 1;
            }
            if i == 0 {
                return false;
            }
        }
        return true;
    }
}

pub trait IntegerSquareRootWithRemainder {
    type Output;

    /// Find ($s$, $q$) such that $n = s^2 + q$ with $n \in [s^2, (s+1)^2)$.
    fn isqrt_rem(self) -> (Self::Output, Self::Output);
}
impl IntegerSquareRootWithRemainder for u64 {
    type Output = u64;
    fn isqrt_rem(self) -> (Self::Output, Self::Output) {
        let mut one = 1 << 62;
        while one > self {
            one >>= 2;
        }
        let mut rem = self;
        let mut res = 0;
        while one > 0 {
            if rem >= res + one {
                rem -= res + one;
                res = res + 2 * one;
            }
            res >>= 1;
            one >>= 2;
        }
        (res, rem)
    }
}

pub fn binary_gcd(mut a: u64, mut b: u64) -> u64 {
    if a == 0 || b == 0 {
        return a + b;
    }
    let k = (a | b).trailing_zeros();
    a >>= a.trailing_zeros();
    b >>= b.trailing_zeros();
    while a != b {
        if a < b {
            std::mem::swap(&mut a, &mut b);
        }
        a -= b;
        a >>= a.trailing_zeros();
    }
    a << k
}

fn squfof_internal(n: u64) -> Option<u64> {
    let (sqrt_n, rem) = n.isqrt_rem();
    if rem == 0 {
        return Some(sqrt_n);
    }
    let D = if n % 4 == 1 { 2 * n } else { n };
    let (sqrt_D, mut Q) = D.isqrt_rem();
    let mut Q_hat = 1_u64;
    let mut P = sqrt_D;
    let L = (2.0 * (2.0 * (D as f64).sqrt()).sqrt()) as u64;
    let B = 2 * L;

    let mut queue = VecDeque::new();

    // println!("Step 1: {} {} {}", P, Q, L);

    let mut i = 1;
    let r = loop {
        // eprintln!("Step 2 {}: {} {}", i, P, Q);
        // 2a
        let q = (sqrt_D + P) / Q;
        let P_prime = q * Q - P;

        // 2b
        if Q <= L {
            if Q % 2 == 0 {
                queue.push_back((Q / 2, P % (Q / 2)));
            } else if 2 * Q <= L {
                queue.push_back((Q, P % Q));
            }
        }

        // 2c
        let t = Q_hat.wrapping_add(q.wrapping_mul(P.wrapping_sub(P_prime)));
        Q_hat = Q;
        Q = t;
        P = P_prime;

        // 2d
        let (r, rem) = Q.isqrt_rem();
        // maybe a typo in the paper (odd / even)
        if i % 2 == 1 && rem == 0 {
            let mut idx = 0;
            while idx < queue.len() {
                let (r_, t) = queue[idx];
                if r == r_ && P % r == t % r {
                    break;
                }
                idx += 1;
            }
            if idx == queue.len() {
                break r;
            } else if r > 1 {
                queue = queue.split_off(idx + 1);
            } else {
                return None;
                //unreachable!()
            }
        }
        i += 1;

        if i >= B {
            return None;
        }
    };
    // 3
    // eprintln!("Step 3: Q_hat = {}, P = {}, r = {}", Q_hat, P, r);
    Q_hat = r;
    P = P + r * ((sqrt_D - P) / r);
    Q = (D - P * P) / Q_hat;
    assert!((D - P * P) % Q_hat == 0);

    // 4
    loop {
        // eprintln!("{} {}", P, Q);
        let q = (sqrt_D + P) / Q;
        let P_prime = q * Q - P;
        if P == P_prime {
            break;
        }
        let t = Q_hat.wrapping_add(q.wrapping_mul(P.wrapping_sub(P_prime)));
        Q_hat = Q;
        Q = t;
        P = P_prime;
    }
    // step 5
    if Q % 2 == 0 {
        return Some(Q / 2);
    } else {
        return Some(Q);
    }
}
pub fn squfof(n: u64) -> u64 {
    for m in 2.. {
        if m > 1 && n % m == 0 {
            return m;
        }
        if let Some(k) = squfof_internal(m * n) {
            let g = binary_gcd(k, n);
            if g != 1 && g != n {
                return g;
            }
        }
    }
    unreachable!();
}

pub trait Factorize: MillerRabin {
    type Output;
    fn factorize(self) -> HashMap<Self::Output, u64>;
}
impl Factorize for u64 {
    type Output = u64;
    fn factorize(self) -> HashMap<Self::Output, u64> {
        let mut result = HashMap::new();
        let mut stack = vec![self];
        while let Some(n) = stack.pop() {
            if n == 1 {
                continue;
            } else if n.is_prime() {
                *result.entry(n).or_insert(0) += 1;
            } else {
                let x = squfof(n);
                stack.push(x);
                stack.push(n / x);
            }
        }
        result
    }
}

// ---------- begin scannner ----------
#[allow(dead_code)]
mod scanner {
    use std::str::FromStr;
    pub struct Scanner<'a> {
        it: std::str::SplitWhitespace<'a>,
    }
    impl<'a> Scanner<'a> {
        pub fn new(s: &'a String) -> Scanner<'a> {
            Scanner {
                it: s.split_whitespace(),
            }
        }
        pub fn next<T: FromStr>(&mut self) -> T {
            self.it.next().unwrap().parse::<T>().ok().unwrap()
        }
        pub fn next_bytes(&mut self) -> Vec<u8> {
            self.it.next().unwrap().bytes().collect()
        }
        pub fn next_chars(&mut self) -> Vec<char> {
            self.it.next().unwrap().chars().collect()
        }
        pub fn next_vec<T: FromStr>(&mut self, len: usize) -> Vec<T> {
            (0..len).map(|_| self.next()).collect()
        }
    }
}
// ---------- end scannner ----------

use std::collections::*;
use std::io::Write;

type Map<K, V> = BTreeMap<K, V>;
type Set<T> = BTreeSet<T>;
type Deque<T> = VecDeque<T>;

fn main() {
    use std::io::Read;
    let mut s = String::new();
    std::io::stdin().read_to_string(&mut s).unwrap();
    let mut sc = scanner::Scanner::new(&s);
    let out = std::io::stdout();
    let mut out = std::io::BufWriter::new(out.lock());
    run(&mut sc, &mut out);
}

type M = ModInt<998244353>;
fn run<W: Write>(sc: &mut scanner::Scanner, out: &mut std::io::BufWriter<W>) {
    let t: u32 = sc.next();
    let m: u64 = sc.next();
    let p = m.factorize();
    let len = p.len();
    for _ in 0..t {
        let n: usize = sc.next();
        let b = sc.next::<M>();
        let c = sc.next::<M>();
        let d = sc.next::<M>();
        let a: Vec<u64> = sc.next_vec(n);
        let mut val = b;
        let mut dp = vec![M::one(); 1 << len];
        for &a in a.iter() {
            if m % a == 0 {
                let mut a = a;
                let mut bit = 0;
                for (i, (&p, &k)) in p.iter().enumerate() {
                    let mut c = 0;
                    while a % p == 0 {
                        a /= p;
                        c += 1;
                    }
                    if c == k {
                        bit |= 1 << i;
                    }
                }
                dp[bit] *= M::one() + val;
            }
            val = val * c + d;
        }
        bitwise_transform(&mut dp, |a, b| *b *= *a);
        let mut ans = M::zero();
        for (i, dp) in dp.iter().rev().enumerate() {
            if i.count_ones() % 2 == 0 {
                ans += *dp - M::one();
            } else {
                ans -= *dp - M::one();
            }
        }
        writeln!(out, "{}", ans).ok();
    }
    /*
    let mut v = 1u128;
    for (i, p) in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47].iter().enumerate() {
        v *= p;
        println!("{}: {}", v, i + 1);
    }
    println!("{}", 10u64.pow(18));
    */
}
0