結果
問題 | No.2578 Jewelry Store |
ユーザー | akakimidori |
提出日時 | 2023-12-06 00:20:36 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 571 ms / 3,500 ms |
コード長 | 26,346 bytes |
コンパイル時間 | 17,120 ms |
コンパイル使用メモリ | 379,948 KB |
実行使用メモリ | 11,008 KB |
最終ジャッジ日時 | 2024-09-27 00:41:39 |
合計ジャッジ時間 | 23,945 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 5 ms
5,248 KB |
testcase_03 | AC | 3 ms
5,248 KB |
testcase_04 | AC | 12 ms
5,376 KB |
testcase_05 | AC | 4 ms
5,376 KB |
testcase_06 | AC | 5 ms
5,376 KB |
testcase_07 | AC | 13 ms
5,376 KB |
testcase_08 | AC | 4 ms
5,376 KB |
testcase_09 | AC | 13 ms
5,376 KB |
testcase_10 | AC | 24 ms
5,376 KB |
testcase_11 | AC | 4 ms
5,376 KB |
testcase_12 | AC | 4 ms
5,376 KB |
testcase_13 | AC | 4 ms
5,376 KB |
testcase_14 | AC | 3 ms
5,376 KB |
testcase_15 | AC | 3 ms
5,376 KB |
testcase_16 | AC | 23 ms
5,376 KB |
testcase_17 | AC | 12 ms
5,376 KB |
testcase_18 | AC | 3 ms
5,376 KB |
testcase_19 | AC | 8 ms
5,376 KB |
testcase_20 | AC | 13 ms
5,376 KB |
testcase_21 | AC | 13 ms
5,376 KB |
testcase_22 | AC | 5 ms
5,376 KB |
testcase_23 | AC | 8 ms
5,376 KB |
testcase_24 | AC | 5 ms
5,376 KB |
testcase_25 | AC | 6 ms
5,376 KB |
testcase_26 | AC | 5 ms
5,376 KB |
testcase_27 | AC | 126 ms
7,040 KB |
testcase_28 | AC | 181 ms
7,040 KB |
testcase_29 | AC | 169 ms
7,040 KB |
testcase_30 | AC | 203 ms
7,168 KB |
testcase_31 | AC | 139 ms
7,168 KB |
testcase_32 | AC | 83 ms
7,936 KB |
testcase_33 | AC | 109 ms
7,168 KB |
testcase_34 | AC | 136 ms
9,604 KB |
testcase_35 | AC | 34 ms
5,376 KB |
testcase_36 | AC | 115 ms
9,332 KB |
testcase_37 | AC | 65 ms
7,552 KB |
testcase_38 | AC | 78 ms
7,552 KB |
testcase_39 | AC | 66 ms
7,680 KB |
testcase_40 | AC | 72 ms
7,424 KB |
testcase_41 | AC | 71 ms
7,424 KB |
testcase_42 | AC | 65 ms
7,424 KB |
testcase_43 | AC | 93 ms
7,168 KB |
testcase_44 | AC | 49 ms
7,552 KB |
testcase_45 | AC | 82 ms
7,424 KB |
testcase_46 | AC | 67 ms
7,296 KB |
testcase_47 | AC | 341 ms
7,424 KB |
testcase_48 | AC | 186 ms
11,008 KB |
testcase_49 | AC | 571 ms
7,296 KB |
testcase_50 | AC | 481 ms
5,376 KB |
testcase_51 | AC | 55 ms
6,940 KB |
testcase_52 | AC | 243 ms
7,040 KB |
testcase_53 | AC | 15 ms
5,376 KB |
コンパイルメッセージ
warning: type alias `Map` is never used --> src/main.rs:940:6 | 940 | type Map<K, V> = BTreeMap<K, V>; | ^^^ | = note: `#[warn(dead_code)]` on by default warning: type alias `Set` is never used --> src/main.rs:941:6 | 941 | type Set<T> = BTreeSet<T>; | ^^^ warning: type alias `Deque` is never used --> src/main.rs:942:6 | 942 | type Deque<T> = VecDeque<T>; | ^^^^^ warning: variable `D` should have a snake case name --> src/main.rs:782:9 | 782 | let D = if n % 4 == 1 { 2 * n } else { n }; | ^ help: convert the identifier to snake case: `d` | = note: `#[warn(non_snake_case)]` on by default warning: variable `sqrt_D` should have a snake case name --> src/main.rs:783:10 | 783 | let (sqrt_D, mut Q) = D.isqrt_rem(); | ^^^^^^ help: convert the identifier to snake case: `sqrt_d` warning: variable `Q` should have a snake case name --> src/main.rs:783:22 | 783 | let (sqrt_D, mut Q) = D.isqrt_rem(); | ^ help: convert the identifier to snake case: `q` warning: variable `Q_hat` should have a snake case name --> src/main.rs:784:13 | 784 | let mut Q_hat = 1_u64; | ^^^^^ help: convert the identifier to snake case: `q_hat` warning: variable `P` should have a snake case name --> src/main.rs:785:13 | 785 | let mut P = sqrt_D; | ^ help: convert the identifier to snake case: `p` warning: variable `L` should have a snake case name --> src/main.rs:786:9 | 786 | let L = (2.0 * (2.0 * (D as f64).sqrt()).sqrt()) as u64; | ^ help: convert the identifier to snake case: `l` warning: variable `B` should have a snake case name --> src/main.rs:787:9 | 787 | let B = 2 * L; | ^ help: convert the identifier to snake case: `b` warning: variable `P_prime` should have a snake case name --> src/main.rs:798:13 | 798 | let P_prime = q * Q -
ソースコード
// ---------- begin bitwise transform ---------- pub fn bitwise_transform<T, F>(a: &mut [T], mut f: F) where F: FnMut(&mut T, &mut T) { let n = a.len().trailing_zeros() as usize; assert!(a.len() == 1 << n); for i in 0..n { for a in a.chunks_exact_mut(2 << i) { let (x, y) = a.split_at_mut(1 << i); for (x, y) in x.iter_mut().zip(y) { f(x, y); } } } } // ---------- end bitwise transform ---------- use std::ops::*; // ---------- begin trait ---------- pub trait Zero: Sized + Add<Self, Output = Self> { fn zero() -> Self; fn is_zero(&self) -> bool; } pub trait One: Sized + Mul<Self, Output = Self> { fn one() -> Self; fn is_one(&self) -> bool; } pub trait Ring: Zero + One + Sub<Output = Self> {} pub trait Field: Ring + Div<Output = Self> {} // ---------- end trait ---------- // ---------- begin modint ---------- pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 { let mut t = 1; while n > 0 { if n & 1 == 1 { t = (t as u64 * r as u64 % m as u64) as u32; } r = (r as u64 * r as u64 % m as u64) as u32; n >>= 1; } t } pub const fn primitive_root(p: u32) -> u32 { let mut m = p - 1; let mut f = [1; 30]; let mut k = 0; let mut d = 2; while d * d <= m { if m % d == 0 { f[k] = d; k += 1; } while m % d == 0 { m /= d; } d += 1; } if m > 1 { f[k] = m; k += 1; } let mut g = 1; while g < p { let mut ok = true; let mut i = 0; while i < k { ok &= pow_mod(g, (p - 1) / f[i], p) > 1; i += 1; } if ok { break; } g += 1; } g } pub const fn is_prime(n: u32) -> bool { if n <= 1 { return false; } let mut d = 2; while d * d <= n { if n % d == 0 { return false; } d += 1; } true } #[derive(Clone, Copy, PartialEq, Eq)] pub struct ModInt<const M: u32>(u32); impl<const M: u32> ModInt<{ M }> { const REM: u32 = { let mut t = 1u32; let mut s = !M + 1; let mut n = !0u32 >> 2; while n > 0 { if n & 1 == 1 { t = t.wrapping_mul(s); } s = s.wrapping_mul(s); n >>= 1; } t }; const INI: u64 = ((1u128 << 64) % M as u128) as u64; const IS_PRIME: () = assert!(is_prime(M)); const PRIMITIVE_ROOT: u32 = primitive_root(M); const ORDER: usize = 1 << (M - 1).trailing_zeros(); const fn reduce(x: u64) -> u32 { let _ = Self::IS_PRIME; let b = (x as u32 * Self::REM) as u64; let t = x + b * M as u64; let mut c = (t >> 32) as u32; if c >= M { c -= M; } c as u32 } const fn multiply(a: u32, b: u32) -> u32 { Self::reduce(a as u64 * b as u64) } pub const fn new(v: u32) -> Self { assert!(v < M); Self(Self::reduce(v as u64 * Self::INI)) } pub const fn const_mul(&self, rhs: Self) -> Self { Self(Self::multiply(self.0, rhs.0)) } pub const fn pow(&self, mut n: u64) -> Self { let mut t = Self::new(1); let mut r = *self; while n > 0 { if n & 1 == 1 { t = t.const_mul(r); } r = r.const_mul(r); n >>= 1; } t } pub const fn inv(&self) -> Self { assert!(self.0 != 0); self.pow(M as u64 - 2) } pub const fn get(&self) -> u32 { Self::reduce(self.0 as u64) } pub const fn zero() -> Self { Self::new(0) } pub const fn one() -> Self { Self::new(1) } } impl<const M: u32> Add for ModInt<{ M }> { type Output = Self; fn add(self, rhs: Self) -> Self::Output { let mut v = self.0 + rhs.0; if v >= M { v -= M; } Self(v) } } impl<const M: u32> Sub for ModInt<{ M }> { type Output = Self; fn sub(self, rhs: Self) -> Self::Output { let mut v = self.0 - rhs.0; if self.0 < rhs.0 { v += M; } Self(v) } } impl<const M: u32> Mul for ModInt<{ M }> { type Output = Self; fn mul(self, rhs: Self) -> Self::Output { self.const_mul(rhs) } } impl<const M: u32> Div for ModInt<{ M }> { type Output = Self; fn div(self, rhs: Self) -> Self::Output { self * rhs.inv() } } impl<const M: u32> AddAssign for ModInt<{ M }> { fn add_assign(&mut self, rhs: Self) { *self = *self + rhs; } } impl<const M: u32> SubAssign for ModInt<{ M }> { fn sub_assign(&mut self, rhs: Self) { *self = *self - rhs; } } impl<const M: u32> MulAssign for ModInt<{ M }> { fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs; } } impl<const M: u32> DivAssign for ModInt<{ M }> { fn div_assign(&mut self, rhs: Self) { *self = *self / rhs; } } impl<const M: u32> Neg for ModInt<{ M }> { type Output = Self; fn neg(self) -> Self::Output { if self.0 == 0 { self } else { Self(M - self.0) } } } impl<const M: u32> std::fmt::Display for ModInt<{ M }> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.get()) } } impl<const M: u32> std::fmt::Debug for ModInt<{ M }> { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.get()) } } impl<const M: u32> std::str::FromStr for ModInt<{ M }> { type Err = std::num::ParseIntError; fn from_str(s: &str) -> Result<Self, Self::Err> { let val = s.parse::<u32>()?; Ok(ModInt::new(val)) } } impl<const M: u32> From<usize> for ModInt<{ M }> { fn from(val: usize) -> ModInt<{ M }> { ModInt::new((val % M as usize) as u32) } } // ---------- end modint ---------- // ---------- begin precalc ---------- pub struct Precalc<const MOD: u32> { fact: Vec<ModInt<MOD>>, ifact: Vec<ModInt<MOD>>, inv: Vec<ModInt<MOD>>, } impl<const MOD: u32> Precalc<MOD> { pub fn new(size: usize) -> Self { let mut fact = vec![ModInt::one(); size + 1]; let mut ifact = vec![ModInt::one(); size + 1]; let mut inv = vec![ModInt::one(); size + 1]; for i in 2..=size { fact[i] = fact[i - 1] * ModInt::from(i); } ifact[size] = fact[size].inv(); for i in (2..=size).rev() { inv[i] = ifact[i] * fact[i - 1]; ifact[i - 1] = ifact[i] * ModInt::from(i); } Self { fact, ifact, inv } } pub fn fact(&self, n: usize) -> ModInt<MOD> { self.fact[n] } pub fn ifact(&self, n: usize) -> ModInt<MOD> { self.ifact[n] } pub fn inv(&self, n: usize) -> ModInt<MOD> { assert!(0 < n); self.inv[n] } pub fn perm(&self, n: usize, k: usize) -> ModInt<MOD> { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[n - k] } pub fn binom(&self, n: usize, k: usize) -> ModInt<MOD> { if n < k { return ModInt::zero(); } self.fact[n] * self.ifact[k] * self.ifact[n - k] } } // ---------- end precalc ---------- impl<const M: u32> Zero for ModInt<{ M }> { fn zero() -> Self { Self::zero() } fn is_zero(&self) -> bool { self.0 == 0 } } impl<const M: u32> One for ModInt<{ M }> { fn one() -> Self { Self::one() } fn is_one(&self) -> bool { self.get() == 1 } } impl<const M: u32> Ring for ModInt<{ M }> {} impl<const M: u32> Field for ModInt<{ M }> {} // ---------- begin array op ---------- struct NTTPrecalc<const M: u32> { sum_e: [ModInt<{ M }>; 30], sum_ie: [ModInt<{ M }>; 30], } impl<const M: u32> NTTPrecalc<{ M }> { const fn new() -> Self { let cnt2 = (M - 1).trailing_zeros() as usize; let root = ModInt::new(ModInt::<{ M }>::PRIMITIVE_ROOT); let zeta = root.pow((M - 1) as u64 >> cnt2); let mut es = [ModInt::zero(); 30]; let mut ies = [ModInt::zero(); 30]; let mut sum_e = [ModInt::zero(); 30]; let mut sum_ie = [ModInt::zero(); 30]; let mut e = zeta; let mut ie = e.inv(); let mut i = cnt2; while i >= 2 { es[i - 2] = e; ies[i - 2] = ie; e = e.const_mul(e); ie = ie.const_mul(ie); i -= 1; } let mut now = ModInt::one(); let mut inow = ModInt::one(); let mut i = 0; while i < cnt2 - 1 { sum_e[i] = es[i].const_mul(now); sum_ie[i] = ies[i].const_mul(inow); now = ies[i].const_mul(now); inow = es[i].const_mul(inow); i += 1; } Self { sum_e, sum_ie } } } struct NTTPrecalcHelper<const MOD: u32>; impl<const MOD: u32> NTTPrecalcHelper<MOD> { const A: NTTPrecalc<MOD> = NTTPrecalc::new(); } pub trait ArrayAdd { type Item; fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>; } impl<T> ArrayAdd for [T] where T: Zero + Copy, { type Item = T; fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> { let mut c = vec![T::zero(); self.len().max(rhs.len())]; c[..self.len()].copy_from_slice(self); c.add_assign(rhs); c } } pub trait ArrayAddAssign { type Item; fn add_assign(&mut self, rhs: &[Self::Item]); } impl<T> ArrayAddAssign for [T] where T: Add<Output = T> + Copy, { type Item = T; fn add_assign(&mut self, rhs: &[Self::Item]) { assert!(self.len() >= rhs.len()); self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a); } } impl<T> ArrayAddAssign for Vec<T> where T: Zero + Add<Output = T> + Copy, { type Item = T; fn add_assign(&mut self, rhs: &[Self::Item]) { if self.len() < rhs.len() { self.resize(rhs.len(), T::zero()); } self.as_mut_slice().add_assign(rhs); } } pub trait ArraySub { type Item; fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>; } impl<T> ArraySub for [T] where T: Zero + Sub<Output = T> + Copy, { type Item = T; fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> { let mut c = vec![T::zero(); self.len().max(rhs.len())]; c[..self.len()].copy_from_slice(self); c.sub_assign(rhs); c } } pub trait ArraySubAssign { type Item; fn sub_assign(&mut self, rhs: &[Self::Item]); } impl<T> ArraySubAssign for [T] where T: Sub<Output = T> + Copy, { type Item = T; fn sub_assign(&mut self, rhs: &[Self::Item]) { assert!(self.len() >= rhs.len()); self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a); } } impl<T> ArraySubAssign for Vec<T> where T: Zero + Sub<Output = T> + Copy, { type Item = T; fn sub_assign(&mut self, rhs: &[Self::Item]) { if self.len() < rhs.len() { self.resize(rhs.len(), T::zero()); } self.as_mut_slice().sub_assign(rhs); } } pub trait ArrayDot { type Item; fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>; } impl<T> ArrayDot for [T] where T: Mul<Output = T> + Copy, { type Item = T; fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> { assert!(self.len() == rhs.len()); self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect() } } pub trait ArrayDotAssign { type Item; fn dot_assign(&mut self, rhs: &[Self::Item]); } impl<T> ArrayDotAssign for [T] where T: MulAssign + Copy, { type Item = T; fn dot_assign(&mut self, rhs: &[Self::Item]) { assert!(self.len() == rhs.len()); self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a); } } pub trait ArrayMul { type Item; fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>; } impl<T> ArrayMul for [T] where T: Zero + One + Copy, { type Item = T; fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> { if self.is_empty() || rhs.is_empty() { return vec![]; } let mut res = vec![T::zero(); self.len() + rhs.len() - 1]; for (i, a) in self.iter().enumerate() { for (res, b) in res[i..].iter_mut().zip(rhs.iter()) { *res = *res + *a * *b; } } res } } // transform でlen=1を指定すればNTTになる pub trait ArrayConvolution { type Item; fn transform(&mut self, len: usize); fn inverse_transform(&mut self, len: usize); fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item>; } impl<const M: u32> ArrayConvolution for [ModInt<{ M }>] { type Item = ModInt<{ M }>; fn transform(&mut self, len: usize) { let f = self; let n = f.len(); let k = (n / len).trailing_zeros() as usize; assert!(len << k == n); assert!(k <= ModInt::<{ M }>::ORDER); let pre = &NTTPrecalcHelper::<{ M }>::A; for ph in 1..=k { let p = len << (k - ph); let mut now = ModInt::one(); for (i, f) in f.chunks_exact_mut(2 * p).enumerate() { let (x, y) = f.split_at_mut(p); for (x, y) in x.iter_mut().zip(y.iter_mut()) { let l = *x; let r = *y * now; *x = l + r; *y = l - r; } now *= pre.sum_e[(!i).trailing_zeros() as usize]; } } } fn inverse_transform(&mut self, len: usize) { let f = self; let n = f.len(); let k = (n / len).trailing_zeros() as usize; assert!(len << k == n); assert!(k <= ModInt::<{ M }>::ORDER); let pre = &NTTPrecalcHelper::<{ M }>::A; for ph in (1..=k).rev() { let p = len << (k - ph); let mut inow = ModInt::one(); for (i, f) in f.chunks_exact_mut(2 * p).enumerate() { let (x, y) = f.split_at_mut(p); for (x, y) in x.iter_mut().zip(y.iter_mut()) { let l = *x; let r = *y; *x = l + r; *y = (l - r) * inow; } inow *= pre.sum_ie[(!i).trailing_zeros() as usize]; } } let ik = ModInt::new(2).inv().pow(k as u64); for f in f.iter_mut() { *f *= ik; } } fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item> { if self.len().min(rhs.len()) <= 32 { return self.mul(rhs); } const PARAM: usize = 10; let size = self.len() + rhs.len() - 1; let mut k = 0; while (size + (1 << k) - 1) >> k > PARAM { k += 1; } let len = (size + (1 << k) - 1) >> k; let mut f = vec![ModInt::zero(); len << k]; let mut g = vec![ModInt::zero(); len << k]; f[..self.len()].copy_from_slice(self); g[..rhs.len()].copy_from_slice(rhs); f.transform(len); g.transform(len); let mut buf = [ModInt::zero(); 2 * PARAM - 1]; let buf = &mut buf[..(2 * len - 1)]; let pre = &NTTPrecalcHelper::<{ M }>::A; let mut now = ModInt::one(); for (i, (f, g)) in f .chunks_exact_mut(2 * len) .zip(g.chunks_exact(2 * len)) .enumerate() { let mut r = now; for (f, g) in f.chunks_exact_mut(len).zip(g.chunks_exact(len)) { buf.fill(ModInt::zero()); for (i, f) in f.iter().enumerate() { for (buf, g) in buf[i..].iter_mut().zip(g.iter()) { *buf = *buf + *f * *g; } } f.copy_from_slice(&buf[..len]); for (f, buf) in f.iter_mut().zip(buf[len..].iter()) { *f = *f + r * *buf; } r = -r; } now *= pre.sum_e[(!i).trailing_zeros() as usize]; } f.inverse_transform(len); f.truncate(self.len() + rhs.len() - 1); f } } // ---------- end array op ---------- pub trait ModularArithmetic: Sized { fn add_mod(self, other: Self, m: Self) -> Self; fn sub_mod(self, other: Self, m: Self) -> Self; fn mul_mod(self, other: Self, m: Self) -> Self; fn div_mod(self, other: Self, m: Self) -> Option<Self>; fn inv_mod(self, m: Self) -> Option<Self>; fn pow_mod(self, exp: Self, m: Self) -> Self; } impl ModularArithmetic for u64 { fn add_mod(self, other: u64, m: u64) -> u64 { let value = self + other; if value >= m { value - m } else { value } } fn sub_mod(self, other: u64, m: u64) -> u64 { if self >= other { self - other } else { self + m - other } } fn mul_mod(self, other: u64, m: u64) -> u64 { //(self * other) % m ((self as u128 * other as u128) % m as u128) as u64 } fn inv_mod(self, m: u64) -> Option<u64> { 1.div_mod(self, m) } fn div_mod(self, other: u64, m: u64) -> Option<u64> { let mut x = (m, 0u64); let mut y = (other, 1u64); while y.0 != 0 { x.1 = x.1.wrapping_sub((x.0 / y.0).wrapping_mul(y.1)); x.0 %= y.0; std::mem::swap(&mut x, &mut y); } if self % x.0 != 0 { None } else { Some((self / x.0).mul_mod(if x.1 >= m { x.1.wrapping_add(m) } else { x.1 }, m)) } } fn pow_mod(self, mut exp: Self, m: Self) -> Self { let mut x = 1; let mut a = self; while exp > 0 { if exp % 2 == 1 { x = x.mul_mod(a, m); } a = a.mul_mod(a, m); exp >>= 1; } x } } pub trait MillerRabin { fn is_prime(self) -> bool; } impl MillerRabin for u64 { fn is_prime(self: u64) -> bool { if self <= 3 { return self == 2 || self == 3; } if self % 2 == 0 { return false; } let r = (self - 1).trailing_zeros(); let d = (self - 1) >> r; for &a in &[2, 325, 9375, 28178, 450775, 9780504, 1795265022] { let a = a % self; if a == 0 { continue; } let mut x = a.pow_mod(d, self); if x == 1 || x == self - 1 { continue; } let mut i = r; while i > 0 { x = x.mul_mod(x, self); if x == 1 { return false; } else if x == self - 1 { break; } i -= 1; } if i == 0 { return false; } } return true; } } pub trait IntegerSquareRootWithRemainder { type Output; /// Find ($s$, $q$) such that $n = s^2 + q$ with $n \in [s^2, (s+1)^2)$. fn isqrt_rem(self) -> (Self::Output, Self::Output); } impl IntegerSquareRootWithRemainder for u64 { type Output = u64; fn isqrt_rem(self) -> (Self::Output, Self::Output) { let mut one = 1 << 62; while one > self { one >>= 2; } let mut rem = self; let mut res = 0; while one > 0 { if rem >= res + one { rem -= res + one; res = res + 2 * one; } res >>= 1; one >>= 2; } (res, rem) } } pub fn binary_gcd(mut a: u64, mut b: u64) -> u64 { if a == 0 || b == 0 { return a + b; } let k = (a | b).trailing_zeros(); a >>= a.trailing_zeros(); b >>= b.trailing_zeros(); while a != b { if a < b { std::mem::swap(&mut a, &mut b); } a -= b; a >>= a.trailing_zeros(); } a << k } fn squfof_internal(n: u64) -> Option<u64> { let (sqrt_n, rem) = n.isqrt_rem(); if rem == 0 { return Some(sqrt_n); } let D = if n % 4 == 1 { 2 * n } else { n }; let (sqrt_D, mut Q) = D.isqrt_rem(); let mut Q_hat = 1_u64; let mut P = sqrt_D; let L = (2.0 * (2.0 * (D as f64).sqrt()).sqrt()) as u64; let B = 2 * L; let mut queue = VecDeque::new(); // println!("Step 1: {} {} {}", P, Q, L); let mut i = 1; let r = loop { // eprintln!("Step 2 {}: {} {}", i, P, Q); // 2a let q = (sqrt_D + P) / Q; let P_prime = q * Q - P; // 2b if Q <= L { if Q % 2 == 0 { queue.push_back((Q / 2, P % (Q / 2))); } else if 2 * Q <= L { queue.push_back((Q, P % Q)); } } // 2c let t = Q_hat.wrapping_add(q.wrapping_mul(P.wrapping_sub(P_prime))); Q_hat = Q; Q = t; P = P_prime; // 2d let (r, rem) = Q.isqrt_rem(); // maybe a typo in the paper (odd / even) if i % 2 == 1 && rem == 0 { let mut idx = 0; while idx < queue.len() { let (r_, t) = queue[idx]; if r == r_ && P % r == t % r { break; } idx += 1; } if idx == queue.len() { break r; } else if r > 1 { queue = queue.split_off(idx + 1); } else { return None; //unreachable!() } } i += 1; if i >= B { return None; } }; // 3 // eprintln!("Step 3: Q_hat = {}, P = {}, r = {}", Q_hat, P, r); Q_hat = r; P = P + r * ((sqrt_D - P) / r); Q = (D - P * P) / Q_hat; assert!((D - P * P) % Q_hat == 0); // 4 loop { // eprintln!("{} {}", P, Q); let q = (sqrt_D + P) / Q; let P_prime = q * Q - P; if P == P_prime { break; } let t = Q_hat.wrapping_add(q.wrapping_mul(P.wrapping_sub(P_prime))); Q_hat = Q; Q = t; P = P_prime; } // step 5 if Q % 2 == 0 { return Some(Q / 2); } else { return Some(Q); } } pub fn squfof(n: u64) -> u64 { for m in 2.. { if m > 1 && n % m == 0 { return m; } if let Some(k) = squfof_internal(m * n) { let g = binary_gcd(k, n); if g != 1 && g != n { return g; } } } unreachable!(); } pub trait Factorize: MillerRabin { type Output; fn factorize(self) -> HashMap<Self::Output, u64>; } impl Factorize for u64 { type Output = u64; fn factorize(self) -> HashMap<Self::Output, u64> { let mut result = HashMap::new(); let mut stack = vec![self]; while let Some(n) = stack.pop() { if n == 1 { continue; } else if n.is_prime() { *result.entry(n).or_insert(0) += 1; } else { let x = squfof(n); stack.push(x); stack.push(n / x); } } result } } // ---------- begin scannner ---------- #[allow(dead_code)] mod scanner { use std::str::FromStr; pub struct Scanner<'a> { it: std::str::SplitWhitespace<'a>, } impl<'a> Scanner<'a> { pub fn new(s: &'a String) -> Scanner<'a> { Scanner { it: s.split_whitespace(), } } pub fn next<T: FromStr>(&mut self) -> T { self.it.next().unwrap().parse::<T>().ok().unwrap() } pub fn next_bytes(&mut self) -> Vec<u8> { self.it.next().unwrap().bytes().collect() } pub fn next_chars(&mut self) -> Vec<char> { self.it.next().unwrap().chars().collect() } pub fn next_vec<T: FromStr>(&mut self, len: usize) -> Vec<T> { (0..len).map(|_| self.next()).collect() } } } // ---------- end scannner ---------- use std::collections::*; use std::io::Write; type Map<K, V> = BTreeMap<K, V>; type Set<T> = BTreeSet<T>; type Deque<T> = VecDeque<T>; fn main() { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); let mut sc = scanner::Scanner::new(&s); let out = std::io::stdout(); let mut out = std::io::BufWriter::new(out.lock()); run(&mut sc, &mut out); } type M = ModInt<998244353>; fn run<W: Write>(sc: &mut scanner::Scanner, out: &mut std::io::BufWriter<W>) { let t: u32 = sc.next(); let m: u64 = sc.next(); let p = m.factorize(); let len = p.len(); for _ in 0..t { let n: usize = sc.next(); let b = sc.next::<M>(); let c = sc.next::<M>(); let d = sc.next::<M>(); let a: Vec<u64> = sc.next_vec(n); let mut val = b; let mut dp = vec![M::one(); 1 << len]; for &a in a.iter() { if m % a == 0 { let mut a = a; let mut bit = 0; for (i, (&p, &k)) in p.iter().enumerate() { let mut c = 0; while a % p == 0 { a /= p; c += 1; } if c == k { bit |= 1 << i; } } dp[bit] *= M::one() + val; } val = val * c + d; } bitwise_transform(&mut dp, |a, b| *b *= *a); let mut ans = M::zero(); for (i, dp) in dp.iter().rev().enumerate() { if i.count_ones() % 2 == 0 { ans += *dp - M::one(); } else { ans -= *dp - M::one(); } } writeln!(out, "{}", ans).ok(); } /* let mut v = 1u128; for (i, p) in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47].iter().enumerate() { v *= p; println!("{}: {}", v, i + 1); } println!("{}", 10u64.pow(18)); */ }