結果

問題 No.2578 Jewelry Store
ユーザー hitonanodehitonanode
提出日時 2023-12-06 00:49:30
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 20,622 bytes
コンパイル時間 2,997 ms
コンパイル使用メモリ 214,068 KB
実行使用メモリ 8,192 KB
最終ジャッジ日時 2024-09-27 00:47:15
合計ジャッジ時間 12,999 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 10 ms
5,376 KB
testcase_03 AC 7 ms
5,376 KB
testcase_04 AC 32 ms
5,376 KB
testcase_05 AC 6 ms
5,376 KB
testcase_06 AC 11 ms
5,376 KB
testcase_07 AC 32 ms
5,376 KB
testcase_08 AC 7 ms
5,376 KB
testcase_09 AC 31 ms
5,376 KB
testcase_10 AC 62 ms
5,376 KB
testcase_11 AC 7 ms
5,376 KB
testcase_12 AC 7 ms
5,376 KB
testcase_13 AC 6 ms
5,376 KB
testcase_14 AC 6 ms
5,376 KB
testcase_15 AC 6 ms
5,376 KB
testcase_16 AC 60 ms
5,376 KB
testcase_17 AC 30 ms
5,376 KB
testcase_18 AC 5 ms
5,376 KB
testcase_19 AC 18 ms
5,376 KB
testcase_20 AC 30 ms
5,376 KB
testcase_21 AC 30 ms
5,376 KB
testcase_22 AC 11 ms
5,376 KB
testcase_23 AC 18 ms
5,376 KB
testcase_24 AC 9 ms
5,376 KB
testcase_25 AC 12 ms
5,376 KB
testcase_26 AC 10 ms
5,376 KB
testcase_27 AC 203 ms
5,376 KB
testcase_28 AC 310 ms
5,376 KB
testcase_29 AC 295 ms
5,376 KB
testcase_30 AC 373 ms
5,376 KB
testcase_31 AC 217 ms
5,376 KB
testcase_32 AC 141 ms
5,760 KB
testcase_33 AC 184 ms
5,376 KB
testcase_34 AC 230 ms
5,648 KB
testcase_35 AC 57 ms
5,376 KB
testcase_36 AC 189 ms
6,040 KB
testcase_37 AC 98 ms
5,376 KB
testcase_38 AC 125 ms
5,376 KB
testcase_39 AC 109 ms
5,376 KB
testcase_40 AC 129 ms
5,376 KB
testcase_41 AC 113 ms
5,376 KB
testcase_42 AC 94 ms
5,376 KB
testcase_43 AC 164 ms
5,376 KB
testcase_44 AC 85 ms
5,376 KB
testcase_45 AC 142 ms
5,376 KB
testcase_46 AC 109 ms
5,376 KB
testcase_47 AC 714 ms
5,376 KB
testcase_48 AC 298 ms
8,192 KB
testcase_49 AC 1,445 ms
5,376 KB
testcase_50 AC 1,339 ms
6,944 KB
testcase_51 AC 101 ms
6,940 KB
testcase_52 AC 416 ms
6,944 KB
testcase_53 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif

uint32_t rand_int() // XorShift random integer generator
{
    static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123;
    uint32_t t = x ^ (x << 11);
    x = y;
    y = z;
    z = w;
    return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
double rand_double() { return (double)rand_int() / UINT32_MAX; }


#include <algorithm>
#include <array>
#include <cassert>
#include <numeric>
#include <vector>

namespace SPRP {
// http://miller-rabin.appspot.com/
const std::vector<std::vector<__int128>> bases{
    {126401071349994536},                              // < 291831
    {336781006125, 9639812373923155},                  // < 1050535501 (1e9)
    {2, 2570940, 211991001, 3749873356},               // < 47636622961201 (4e13)
    {2, 325, 9375, 28178, 450775, 9780504, 1795265022} // <= 2^64
};
inline int get_id(long long n) {
    if (n < 291831) {
        return 0;
    } else if (n < 1050535501) {
        return 1;
    } else if (n < 47636622961201)
        return 2;
    else { return 3; }
}
} // namespace SPRP

// Miller-Rabin primality test
// https://ja.wikipedia.org/wiki/%E3%83%9F%E3%83%A9%E3%83%BC%E2%80%93%E3%83%A9%E3%83%93%E3%83%B3%E7%B4%A0%E6%95%B0%E5%88%A4%E5%AE%9A%E6%B3%95
// Complexity: O(lg n) per query
struct {
    long long modpow(__int128 x, __int128 n, long long mod) noexcept {
        __int128 ret = 1;
        for (x %= mod; n; x = x * x % mod, n >>= 1) ret = (n & 1) ? ret * x % mod : ret;
        return ret;
    }
    bool operator()(long long n) noexcept {
        if (n < 2) return false;
        if (n % 2 == 0) return n == 2;
        int s = __builtin_ctzll(n - 1);

        for (__int128 a : SPRP::bases[SPRP::get_id(n)]) {
            if (a % n == 0) continue;
            a = modpow(a, (n - 1) >> s, n);
            bool may_composite = true;
            if (a == 1) continue;
            for (int r = s; r--; a = a * a % n) {
                if (a == n - 1) may_composite = false;
            }
            if (may_composite) return false;
        }
        return true;
    }
} is_prime;

struct {
    // Pollard's rho algorithm: find factor greater than 1
    long long find_factor(long long n) {
        assert(n > 1);
        if (n % 2 == 0) return 2;
        if (is_prime(n)) return n;
        long long c = 1;
        auto f = [&](__int128 x) -> long long { return (x * x + c) % n; };

        for (int t = 1;; t++) {
            for (c = 0; c == 0 or c + 2 == n;) c = rand_int() % n;
            long long x0 = t, m = std::max(n >> 3, 1LL), x, ys, y = x0, r = 1, g, q = 1;
            do {
                x = y;
                for (int i = r; i--;) y = f(y);
                long long k = 0;
                do {
                    ys = y;
                    for (int i = std::min(m, r - k); i--;)
                        y = f(y), q = __int128(q) * std::abs(x - y) % n;
                    g = std::__gcd<long long>(q, n);
                    k += m;
                } while (k < r and g <= 1);
                r <<= 1;
            } while (g <= 1);
            if (g == n) {
                do {
                    ys = f(ys);
                    g = std::__gcd(std::abs(x - ys), n);
                } while (g <= 1);
            }
            if (g != n) return g;
        }
    }

    std::vector<long long> operator()(long long n) {
        std::vector<long long> ret;
        while (n > 1) {
            long long f = find_factor(n);
            if (f < n) {
                auto tmp = operator()(f);
                ret.insert(ret.end(), tmp.begin(), tmp.end());
            } else
                ret.push_back(n);
            n /= f;
        }
        std::sort(ret.begin(), ret.end());
        return ret;
    }
    long long euler_phi(long long n) {
        long long ret = 1, last = -1;
        for (auto p : this->operator()(n)) ret *= p - (last != p), last = p;
        return ret;
    }
} FactorizeLonglong;

#include <cassert>
#include <iostream>
#include <set>
#include <vector>

template <int md> struct ModInt {
    using lint = long long;
    constexpr static int mod() { return md; }
    static int get_primitive_root() {
        static int primitive_root = 0;
        if (!primitive_root) {
            primitive_root = [&]() {
                std::set<int> fac;
                int v = md - 1;
                for (lint i = 2; i * i <= v; i++)
                    while (v % i == 0) fac.insert(i), v /= i;
                if (v > 1) fac.insert(v);
                for (int g = 1; g < md; g++) {
                    bool ok = true;
                    for (auto i : fac)
                        if (ModInt(g).pow((md - 1) / i) == 1) {
                            ok = false;
                            break;
                        }
                    if (ok) return g;
                }
                return -1;
            }();
        }
        return primitive_root;
    }
    int val_;
    int val() const noexcept { return val_; }
    constexpr ModInt() : val_(0) {}
    constexpr ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; }
    constexpr ModInt(lint v) { _setval(v % md + md); }
    constexpr explicit operator bool() const { return val_ != 0; }
    constexpr ModInt operator+(const ModInt &x) const {
        return ModInt()._setval((lint)val_ + x.val_);
    }
    constexpr ModInt operator-(const ModInt &x) const {
        return ModInt()._setval((lint)val_ - x.val_ + md);
    }
    constexpr ModInt operator*(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.val_ % md);
    }
    constexpr ModInt operator/(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.inv().val() % md);
    }
    constexpr ModInt operator-() const { return ModInt()._setval(md - val_); }
    constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend constexpr ModInt operator+(lint a, const ModInt &x) {
        return ModInt()._setval(a % md + x.val_);
    }
    friend constexpr ModInt operator-(lint a, const ModInt &x) {
        return ModInt()._setval(a % md - x.val_ + md);
    }
    friend constexpr ModInt operator*(lint a, const ModInt &x) {
        return ModInt()._setval(a % md * x.val_ % md);
    }
    friend constexpr ModInt operator/(lint a, const ModInt &x) {
        return ModInt()._setval(a % md * x.inv().val() % md);
    }
    constexpr bool operator==(const ModInt &x) const { return val_ == x.val_; }
    constexpr bool operator!=(const ModInt &x) const { return val_ != x.val_; }
    constexpr bool operator<(const ModInt &x) const {
        return val_ < x.val_;
    } // To use std::map<ModInt, T>
    friend std::istream &operator>>(std::istream &is, ModInt &x) {
        lint t;
        return is >> t, x = ModInt(t), is;
    }
    constexpr friend std::ostream &operator<<(std::ostream &os, const ModInt &x) {
        return os << x.val_;
    }

    constexpr ModInt pow(lint n) const {
        ModInt ans = 1, tmp = *this;
        while (n) {
            if (n & 1) ans *= tmp;
            tmp *= tmp, n >>= 1;
        }
        return ans;
    }

    static constexpr int cache_limit = std::min(md, 1 << 21);
    static std::vector<ModInt> facs, facinvs, invs;

    constexpr static void _precalculation(int N) {
        const int l0 = facs.size();
        if (N > md) N = md;
        if (N <= l0) return;
        facs.resize(N), facinvs.resize(N), invs.resize(N);
        for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;
        facinvs[N - 1] = facs.back().pow(md - 2);
        for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);
        for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];
    }

    constexpr ModInt inv() const {
        if (this->val_ < cache_limit) {
            if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0};
            while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
            return invs[this->val_];
        } else {
            return this->pow(md - 2);
        }
    }
    constexpr ModInt fac() const {
        while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
        return facs[this->val_];
    }
    constexpr ModInt facinv() const {
        while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
        return facinvs[this->val_];
    }
    constexpr ModInt doublefac() const {
        lint k = (this->val_ + 1) / 2;
        return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac())
                                : ModInt(k).fac() * ModInt(2).pow(k);
    }

    constexpr ModInt nCr(int r) const {
        if (r < 0 or this->val_ < r) return ModInt(0);
        return this->fac() * (*this - r).facinv() * ModInt(r).facinv();
    }

    constexpr ModInt nPr(int r) const {
        if (r < 0 or this->val_ < r) return ModInt(0);
        return this->fac() * (*this - r).facinv();
    }

    static ModInt binom(int n, int r) {
        static long long bruteforce_times = 0;

        if (r < 0 or n < r) return ModInt(0);
        if (n <= bruteforce_times or n < (int)facs.size()) return ModInt(n).nCr(r);

        r = std::min(r, n - r);

        ModInt ret = ModInt(r).facinv();
        for (int i = 0; i < r; ++i) ret *= n - i;
        bruteforce_times += r;

        return ret;
    }

    // Multinomial coefficient, (k_1 + k_2 + ... + k_m)! / (k_1! k_2! ... k_m!)
    // Complexity: O(sum(ks))
    template <class Vec> static ModInt multinomial(const Vec &ks) {
        ModInt ret{1};
        int sum = 0;
        for (int k : ks) {
            assert(k >= 0);
            ret *= ModInt(k).facinv(), sum += k;
        }
        return ret * ModInt(sum).fac();
    }

    // Catalan number, C_n = binom(2n, n) / (n + 1)
    // C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, ...
    // https://oeis.org/A000108
    // Complexity: O(n)
    static ModInt catalan(int n) {
        if (n < 0) return ModInt(0);
        return ModInt(n * 2).fac() * ModInt(n + 1).facinv() * ModInt(n).facinv();
    }

    ModInt sqrt() const {
        if (val_ == 0) return 0;
        if (md == 2) return val_;
        if (pow((md - 1) / 2) != 1) return 0;
        ModInt b = 1;
        while (b.pow((md - 1) / 2) == 1) b += 1;
        int e = 0, m = md - 1;
        while (m % 2 == 0) m >>= 1, e++;
        ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
        x *= (*this);
        ModInt z = b.pow(m);
        while (y != 1) {
            int j = 0;
            ModInt t = y;
            while (t != 1) j++, t *= t;
            z = z.pow(1LL << (e - j - 1));
            x *= z, z *= z, y *= z;
            e = j;
        }
        return ModInt(std::min(x.val_, md - x.val_));
    }
};
template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};

using mint = ModInt<998244353>;

long long m;
vector<pair<lint, int>> facs;

// Fast Walsh-Hadamard transform and its abstraction
// Tutorials: <https://codeforces.com/blog/entry/71899>
//            <https://csacademy.com/blog/fast-fourier-transform-and-variations-of-it>
template <typename T, typename F> void abstract_fwht(std::vector<T> &seq, F f) {
    const int n = seq.size();
    assert(__builtin_popcount(n) == 1);
    for (int w = 1; w < n; w *= 2) {
        for (int i = 0; i < n; i += w * 2) {
            for (int j = 0; j < w; j++) { f(seq[i + j], seq[i + j + w]); }
        }
    }
}

template <typename T, typename F1, typename F2>
std::vector<T> bitwise_conv(std::vector<T> x, std::vector<T> y, F1 f, F2 finv) {
    const int n = x.size();
    assert(__builtin_popcount(n) == 1);
    assert(x.size() == y.size());
    if (x == y) {
        abstract_fwht(x, f), y = x;
    } else {
        abstract_fwht(x, f), abstract_fwht(y, f);
    }
    for (size_t i = 0; i < x.size(); i++) { x[i] *= y[i]; }
    abstract_fwht(x, finv);
    return x;
}


// bitwise OR convolution
// ret[i] = \sum_{(j | k) == i} x[j] * y[k]
template <typename T> std::vector<T> orconv(std::vector<T> x, std::vector<T> y) {
    return bitwise_conv(
        x, y, [](T &lo, T &hi) { hi += lo; }, [](T &lo, T &hi) { hi -= lo; });
}


mint solve() {
    int n;
    mint B, C, D;
    cin >> n >> B >> C >> D;
    vector<lint> A(n);
    cin >> A;
    dbg(A);
    vector F(facs.size(), vector<bool>(n));
    vector<bool> is_bad(n);
    REP(i, n) {
        lint a = A.at(i);
        int t = -1;
        for (auto [p, d] : facs) {
            ++t;
            int e = 0;
            while (a % p == 0) a /= p, e++;
            if (e > d) is_bad.at(i) = true;
            if (e == d) F.at(t).at(i) = true;
        }
        if (a > 1) is_bad.at(i) = true;
    }
    dbg(is_bad);

    vector<mint> dp(1 << facs.size(), 1);

    using T = mint;
    auto func = [](T &lo, T &hi) { hi += lo; };
    auto func_inv = [](T &lo, T &hi) { hi -= lo; };

    mint W = B;
    int n1 = 0;
    REP(i, n) {
        if (A.at(i) == 1) n1++;
        int s = 0;
        REP(d, facs.size()) {
            if (F.at(d).at(i)) s |= 1 << d;
        }
        if (!is_bad.at(i)) dp.at(s) *= W + 1;
        W = W * C + D;
    }
    REP(d, facs.size()) {
        REP(i, dp.size()) {
            if (i & (1 << d)) dp.at(i) *= dp.at(i ^ (1 << d));
        }
    }

    abstract_fwht(dp, func_inv);

    // dbg(is_bad);
    return dp.back() - (m == 1 ? (mint(2).pow(n1) - 1) : 0);
}

int main() {
    int T;
    cin >> T >> m;
    auto factors = FactorizeLonglong(m);
    sort(factors.begin(), factors.end());
    dbg(factors);
    for (auto p : factors) {
        if (facs.empty() or facs.back().first != p) {
            facs.emplace_back(p, 0);
        }
        facs.back().second++;
    }
    dbg(facs);

    while (T--) cout << solve() << '\n';
}
0