結果
問題 | No.2576 LCM Pattern |
ユーザー | miscalc |
提出日時 | 2023-12-06 14:16:24 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 4 ms / 2,000 ms |
コード長 | 7,308 bytes |
コンパイル時間 | 5,352 ms |
コンパイル使用メモリ | 284,036 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-27 01:23:03 |
合計ジャッジ時間 | 5,473 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 3 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 4 ms
5,376 KB |
testcase_13 | AC | 3 ms
5,376 KB |
testcase_14 | AC | 4 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 1 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using ull = unsigned long long; using pll = pair<ll, ll>; using tlll = tuple<ll, ll, ll>; constexpr ll INF = 1LL << 60; template<class T> bool chmin(T& a, T b) {if (a > b) {a = b; return true;} return false;} template<class T> bool chmax(T& a, T b) {if (a < b) {a = b; return true;} return false;} ll safemod(ll A, ll M) {ll res = A % M; if (res < 0) res += M; return res;} ll divfloor(ll A, ll B) {if (B < 0) A = -A, B = -B; return (A - safemod(A, B)) / B;} ll divceil(ll A, ll B) {if (B < 0) A = -A, B = -B; return divfloor(A + B - 1, B);} ll pow_ll(ll A, ll B) {if (A == 0 || A == 1) {return A;} if (A == -1) {return B & 1 ? -1 : 1;} ll res = 1; for (int i = 0; i < B; i++) {res *= A;} return res;} ll mul_limited(ll A, ll B, ll M = INF) { return B == 0 ? 0 : A > M / B ? M : A * B; } ll pow_limited(ll A, ll B, ll M = INF) { if (A == 0 || A == 1) {return A;} ll res = 1; for (int i = 0; i < B; i++) {if (res > M / A) return M; res *= A;} return res;} template<class T> void unique(vector<T> &V) {V.erase(unique(V.begin(), V.end()), V.end());} template<class T> void sortunique(vector<T> &V) {sort(V.begin(), V.end()); V.erase(unique(V.begin(), V.end()), V.end());} #define FINALANS(A) do {cout << (A) << '\n'; exit(0);} while (false) template<class T> void printvec(const vector<T> &V) {int _n = V.size(); for (int i = 0; i < _n; i++) cout << V[i] << (i == _n - 1 ? "" : " ");cout << '\n';} template<class T> void printvect(const vector<T> &V) {for (auto v : V) cout << v << '\n';} template<class T> void printvec2(const vector<vector<T>> &V) {for (auto &v : V) printvec(v);} //* #include <atcoder/all> using namespace atcoder; using mint = modint998244353; //using mint = modint1000000007; //using mint = modint; //*/ bool isprime(ll n) { if (n == 1) return false; const vector<ll> as = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; const vector<ll> ps = {2, 3, 5, 13, 19, 73, 193, 407521, 299210837}; for (auto p : ps) { if (n == p) return true; if (n % p == 0) return false; } ll d = n - 1; int s = 0; while (d % 2 == 0) d /= 2, s++; for (auto a : as) { ll a0 = 1; for (ll d2 = d, tmp = a; d2 > 0; d2 /= 2, tmp = __int128_t(tmp) * tmp % n) { if (d2 % 2 == 1) a0 = __int128_t(a0) * tmp % n; } if (a0 == 1 || a0 == n - 1) continue; for (int r = 1; r <= s; r++) { if (r == s) return false; a0 = __int128_t(a0) * a0 % n; if (a0 == n - 1) break; } } return true; } ll getprimefactor(ll n) { if (isprime(n)) return n; int m = pow(n, .125); for (int c = 1; c < 100; c++) { auto f = [&](ll a) -> ll { return (__int128_t(a) * a + c) % n; }; ll x = 2, y = 2, prod = 1, g = 1; while (g == 1) { for (int i = 0; i < m; i++) { x = f(x), y = f(f(y)); prod = __int128_t(prod) * (x - y) % n; } g = gcd(prod, n); } if (g == n) continue; return getprimefactor(g); } assert(false); } vector<ll> factorize_fast(ll n) { vector<ll> res; for (int p = 2; p < 100; p++) { while (n % p == 0) { n /= p; res.emplace_back(p); } } while (n > 1) { ll p = getprimefactor(n); n /= p; res.emplace_back(p); } sort(res.begin(), res.end()); return res; } vector<pll> to_vpll(const vector<ll> &ps) { vector<pll> pes; for (auto p : ps) { if (pes.empty() || pes.back().first != p) pes.emplace_back(make_pair(p, 1)); else pes.back().second++; } return pes; } vector<ll> divisors(const vector<pll> &pes) { if (pes.empty()) return {1}; vector<ll> es(pes.size(), 0); auto next_es = [&]() -> bool { es[0]++; for (int i = 0; i < (int)es.size(); i++) { if (es[i] <= pes[i].second) break; if (i == (int)es.size() - 1) return false; es[i] = 0; es[i + 1]++; } return true; }; vector<ll> ds; do { ll d = 1; for (int i = 0; i < (int)es.size(); i++) d *= pow_ll(pes[i].first, es[i]); ds.emplace_back(d); } while (next_es()); sort(ds.begin(), ds.end()); return ds; } // https://nyaannyaan.github.io/library/multiplicative-function/divisor-multiple-transform.hpp.html struct ZetaMobiusDivisorMultiple { ll n; vector<ll> ds, ps; ZetaMobiusDivisorMultiple() {} ZetaMobiusDivisorMultiple(ll n) : n(n) { /* 通常 for (ll d = 1; d * d <= n; d++) { if (n % d == 0) { ds.emplace_back(d); if (d * d != n) ds.emplace_back(n / d); } } sort(ds.begin(), ds.end()); for (ll p = 2; p * p <= n; p++) { if (n % p == 0) { ps.emplace_back(p); while (n % p == 0) n /= p; } } if (n != 1) ps.emplace_back(n); //*/ //* 高速素因数分解に基づいた方法 ps = factorize_fast(n); ds = divisors(to_vpll(ps)); unique(ps); //*/ } // d から f(d) を計算する関数を受け取って、実際に全部の d について計算した map を返す template<class T> map<ll, T> func_to_map(const function<T(ll)> &f) const { map<ll, T> res; for (auto d : ds) res[d] = f(d); return res; } // ζa(n) = Σ{d | n} a(d) template<class T> map<ll, T> zeta_divisor(const map<ll, T> &A) const { map<ll, T> B(A); for (auto &p : ps) { for (auto &d : ds) { if (d > n / p) break; if (n % (d * p) == 0) B[d * p] += B[d]; } } return B; } // μ は ζ の逆変換 // μa(n) = Σ{d | n} μ(n/d)a(d) cf. メビウスの反転公式 template<class T> map<ll, T> mobius_divisor(const map<ll, T> &A) const { map<ll, T> B(A); for (auto &p : ps) { for (int i = (int)ds.size() - 1; i >= 0; i--) { ll d = ds[i]; if (d > n / p) continue; if (n % (d * p) == 0) B[d * p] -= B[d]; } } return B; } // ζ'a(n) = Σ{n | m} a(m) template<class T> map<ll, T> zeta_multiple(const map<ll, T> &A) const { map<ll, T> B(A); for (auto &p : ps) { for (int i = (int)ds.size() - 1; i >= 0; i--) { ll d = ds[i]; if (d > n / p) continue; if (n % (d * p) == 0) B[d] += B[d * p]; } } return B; } // μ' は ζ' の逆変換 // μ'a(n) = Σ{n | m} μ(m/n)g(m) template<class T> map<ll, T> mobius_multiple(const map<ll, T> &A) const { map<ll, T> B(A); for (auto &p : ps) { for (auto &d : ds) { if (d > n / p) break; if (n % (d * p) == 0) B[d] -= B[d * p]; } } return B; } }; int main() { ll N, M; cin >> N >> M; ZetaMobiusDivisorMultiple zmdm(M); map<ll, mint> sigma = zmdm.zeta_divisor(zmdm.func_to_map<mint>([&](ll) -> mint { return 1; })); map<ll, mint> res = zmdm.mobius_divisor(zmdm.func_to_map<mint>([&](ll d) -> mint { return sigma[d].pow(N); })); mint ans = res[M]; cout << ans.val() << endl; }