結果
| 問題 |
No.2578 Jewelry Store
|
| コンテスト | |
| ユーザー |
noshi91
|
| 提出日時 | 2023-12-06 23:02:48 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 641 ms / 3,500 ms |
| コード長 | 8,192 bytes |
| コンパイル時間 | 2,622 ms |
| コンパイル使用メモリ | 210,684 KB |
| 最終ジャッジ日時 | 2025-02-18 08:47:43 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 54 |
ソースコード
//#define NDEBUG
#pragma warning(disable : 4146)
#include <bits/stdc++.h>
namespace n91 {
using i32 = std::int32_t;
using i64 = std::int64_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using isize = std::ptrdiff_t;
using usize = std::size_t;
using f64 = double;
struct rep {
struct itr {
usize i;
constexpr itr(const usize i) noexcept : i(i) {}
void operator++() noexcept { ++i; }
constexpr usize operator*() const noexcept { return i; }
constexpr bool operator!=(const itr x) const noexcept { return i != x.i; }
};
const itr f, l;
constexpr rep(const usize f, const usize l) noexcept
: f(std::min(f, l)), l(l) {}
constexpr auto begin() const noexcept { return f; }
constexpr auto end() const noexcept { return l; }
};
struct revrep {
struct itr {
usize i;
constexpr itr(const usize i) noexcept : i(i) {}
void operator++() noexcept { --i; }
constexpr usize operator*() const noexcept { return i; }
constexpr bool operator!=(const itr x) const noexcept { return i != x.i; }
};
const itr f, l;
constexpr revrep(const usize f, const usize l) noexcept
: f(l - 1), l(std::min(f, l) - 1) {}
constexpr auto begin() const noexcept { return f; }
constexpr auto end() const noexcept { return l; }
};
template <class T> auto md_vec(const usize n, const T &value) {
return std::vector<T>(n, value);
}
template <class... Args> auto md_vec(const usize n, Args... args) {
return std::vector<decltype(md_vec(args...))>(n, md_vec(args...));
}
template <class T> constexpr T difference(const T &a, const T &b) noexcept {
return a < b ? b - a : a - b;
}
template <class T> void chmin(T &a, const T &b) noexcept {
if (b < a)
a = b;
}
template <class T> void chmax(T &a, const T &b) noexcept {
if (a < b)
a = b;
}
template <class F> class rec_lambda {
F f;
public:
rec_lambda(F &&f_) : f(std::forward<F>(f_)) {}
template <class... Args> auto operator()(Args &&... args) const {
return f(*this, std::forward<Args>(args)...);
}
};
template <class T> T scan() {
T ret;
std::cin >> ret;
return ret;
}
constexpr char eoln = '\n';
i64 floor_div(const i64 n, const i64 d) {
assert(d != 0);
return n / d - static_cast<i64>((n ^ d) < 0 && n % d != 0);
}
i64 ceil_div(const i64 n, const i64 d) {
assert(d != 0);
return n / d + static_cast<i64>((n ^ d) >= 0 && n % d != 0);
}
#ifdef N91_LOCAL
#define OJ_LOCAL(a, b) b
#else
#define OJ_LOCAL(a, b) a
#endif
} // namespace n91
// https://ei1333.github.io/library/math/number-theory/fast-prime-factorization.hpp
namespace ei1333 {
using namespace std;
namespace FastPrimeFactorization {
template <typename word, typename dword, typename sword> struct UnsafeMod {
UnsafeMod() : x(0) {}
UnsafeMod(word _x) : x(init(_x)) {}
bool operator==(const UnsafeMod &rhs) const { return x == rhs.x; }
bool operator!=(const UnsafeMod &rhs) const { return x != rhs.x; }
UnsafeMod &operator+=(const UnsafeMod &rhs) {
if ((x += rhs.x) >= mod)
x -= mod;
return *this;
}
UnsafeMod &operator-=(const UnsafeMod &rhs) {
if (sword(x -= rhs.x) < 0)
x += mod;
return *this;
}
UnsafeMod &operator*=(const UnsafeMod &rhs) {
x = reduce(dword(x) * rhs.x);
return *this;
}
UnsafeMod operator+(const UnsafeMod &rhs) const {
return UnsafeMod(*this) += rhs;
}
UnsafeMod operator-(const UnsafeMod &rhs) const {
return UnsafeMod(*this) -= rhs;
}
UnsafeMod operator*(const UnsafeMod &rhs) const {
return UnsafeMod(*this) *= rhs;
}
UnsafeMod pow(uint64_t e) const {
UnsafeMod ret(1);
for (UnsafeMod base = *this; e; e >>= 1, base *= base) {
if (e & 1)
ret *= base;
}
return ret;
}
word get() const { return reduce(x); }
static constexpr int word_bits = sizeof(word) * 8;
static word modulus() { return mod; }
static word init(word w) { return reduce(dword(w) * r2); }
static void set_mod(word m) {
mod = m;
inv = mul_inv(mod);
r2 = -dword(mod) % mod;
}
static word reduce(dword x) {
word y =
word(x >> word_bits) - word((dword(word(x) * inv) * mod) >> word_bits);
return sword(y) < 0 ? y + mod : y;
}
static word mul_inv(word n, int e = 6, word x = 1) {
return !e ? x : mul_inv(n, e - 1, x * (2 - x * n));
}
static word mod, inv, r2;
word x;
};
using uint128_t = __uint128_t;
using Mod64 = UnsafeMod<uint64_t, uint128_t, int64_t>;
template <> uint64_t Mod64::mod = 0;
template <> uint64_t Mod64::inv = 0;
template <> uint64_t Mod64::r2 = 0;
using Mod32 = UnsafeMod<uint32_t, uint64_t, int32_t>;
template <> uint32_t Mod32::mod = 0;
template <> uint32_t Mod32::inv = 0;
template <> uint32_t Mod32::r2 = 0;
bool miller_rabin_primality_test_uint64(uint64_t n) {
Mod64::set_mod(n);
uint64_t d = n - 1;
while (d % 2 == 0)
d /= 2;
Mod64 e{1}, rev{n - 1};
// http://miller-rabin.appspot.com/ < 2^64
for (uint64_t a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
if (n <= a)
break;
uint64_t t = d;
Mod64 y = Mod64(a).pow(t);
while (t != n - 1 && y != e && y != rev) {
y *= y;
t *= 2;
}
if (y != rev && t % 2 == 0)
return false;
}
return true;
}
bool miller_rabin_primality_test_uint32(uint32_t n) {
Mod32::set_mod(n);
uint32_t d = n - 1;
while (d % 2 == 0)
d /= 2;
Mod32 e{1}, rev{n - 1};
for (uint32_t a : {2, 7, 61}) {
if (n <= a)
break;
uint32_t t = d;
Mod32 y = Mod32(a).pow(t);
while (t != n - 1 && y != e && y != rev) {
y *= y;
t *= 2;
}
if (y != rev && t % 2 == 0)
return false;
}
return true;
}
bool is_prime(uint64_t n) {
if (n == 2)
return true;
if (n == 1 || n % 2 == 0)
return false;
if (n < uint64_t(1) << 31)
return miller_rabin_primality_test_uint32(n);
return miller_rabin_primality_test_uint64(n);
}
uint64_t pollard_rho(uint64_t n) {
if (is_prime(n))
return n;
if (n % 2 == 0)
return 2;
Mod64::set_mod(n);
uint64_t d;
Mod64 one{1};
for (Mod64 c{one};; c += one) {
Mod64 x{2}, y{2};
do {
x = x * x + c;
y = y * y + c;
y = y * y + c;
d = gcd((x - y).get(), n);
} while (d == 1);
if (d < n)
return d;
}
assert(0);
}
vector<uint64_t> prime_factor(uint64_t n) {
if (n <= 1)
return {};
uint64_t p = pollard_rho(n);
if (p == n)
return {p};
auto l = prime_factor(p);
auto r = prime_factor(n / p);
copy(begin(r), end(r), back_inserter(l));
return l;
}
}; // namespace FastPrimeFactorization
} // namespace ei1333
#include <vector>
template <class F, class T>
void bitwise_transform(const F f, std::vector<T> &a) {
const int n = a.size();
for (int w = 1; w < n; w *= 2) {
for (int k = 0; k < n; k += w * 2) {
for (int i = 0; i < w; i++) {
f(a[k + i], a[k + w + i]);
}
}
}
}
#include <atcoder/modint>
using mint = atcoder::modint998244353;
namespace n91 {
void main_() {
const usize T = scan<usize>();
const u64 m = scan<u64>();
std::vector<u64> ps;
{
auto f = ei1333::FastPrimeFactorization::prime_factor(m);
std::set<u64> s;
for (auto p : f)
s.insert(p);
ps.assign(s.begin(), s.end());
}
for (const usize loop : rep(0, T)) {
const usize n = scan<usize>();
mint B = scan<u32>();
const mint C = scan<u32>();
const mint D = scan<u32>();
std::vector<mint> v(1 << ps.size(), 1);
for (const usize i : rep(0, n)) {
u64 A = scan<u64>();
if (m % A == 0) {
A = m / A;
usize j = 0;
for (const usize k : rep(0, ps.size())) {
if (A % ps[k] == 0)
j |= 1 << k;
}
v[j] *= B + 1;
}
B = C * B + D;
}
bitwise_transform([](auto &l, auto &r) { l *= r; }, v);
mint ans = 0;
for (const usize j : rep(0, v.size())) {
ans += (__builtin_parity(j) ? -1 : 1) * v[j];
}
if (m == 1)
ans -= 1;
std::cout << ans.val() << eoln;
}
}
} // namespace n91
int main() {
//*
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
//*/
std::cout << std::fixed << std::setprecision(20);
n91::main_();
return 0;
}
noshi91