結果

問題 No.1785 Inequality Signs
ユーザー vwxyzvwxyz
提出日時 2023-12-08 05:10:18
言語 Python3
(3.12.2 + numpy 1.26.4 + scipy 1.12.0)
結果
AC  
実行時間 923 ms / 2,000 ms
コード長 2,936 bytes
コンパイル時間 356 ms
コンパイル使用メモリ 13,056 KB
実行使用メモリ 26,880 KB
最終ジャッジ日時 2024-09-27 02:40:12
合計ジャッジ時間 26,173 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 30 ms
11,136 KB
testcase_01 AC 161 ms
13,568 KB
testcase_02 AC 636 ms
22,400 KB
testcase_03 AC 868 ms
26,368 KB
testcase_04 AC 36 ms
11,008 KB
testcase_05 AC 379 ms
17,536 KB
testcase_06 AC 787 ms
24,704 KB
testcase_07 AC 51 ms
11,520 KB
testcase_08 AC 756 ms
24,320 KB
testcase_09 AC 152 ms
13,440 KB
testcase_10 AC 548 ms
20,608 KB
testcase_11 AC 177 ms
13,952 KB
testcase_12 AC 318 ms
16,512 KB
testcase_13 AC 135 ms
13,184 KB
testcase_14 AC 416 ms
18,304 KB
testcase_15 AC 337 ms
16,896 KB
testcase_16 AC 254 ms
15,360 KB
testcase_17 AC 557 ms
20,608 KB
testcase_18 AC 522 ms
20,608 KB
testcase_19 AC 430 ms
18,688 KB
testcase_20 AC 506 ms
19,712 KB
testcase_21 AC 452 ms
18,816 KB
testcase_22 AC 161 ms
13,696 KB
testcase_23 AC 248 ms
15,488 KB
testcase_24 AC 833 ms
26,112 KB
testcase_25 AC 331 ms
17,024 KB
testcase_26 AC 322 ms
16,768 KB
testcase_27 AC 882 ms
26,752 KB
testcase_28 AC 896 ms
26,752 KB
testcase_29 AC 876 ms
26,752 KB
testcase_30 AC 889 ms
26,752 KB
testcase_31 AC 915 ms
26,880 KB
testcase_32 AC 923 ms
26,880 KB
testcase_33 AC 30 ms
11,136 KB
testcase_34 AC 67 ms
11,904 KB
testcase_35 AC 139 ms
13,440 KB
testcase_36 AC 734 ms
23,936 KB
testcase_37 AC 826 ms
26,240 KB
testcase_38 AC 715 ms
23,936 KB
testcase_39 AC 207 ms
14,592 KB
testcase_40 AC 293 ms
16,384 KB
testcase_41 AC 465 ms
19,456 KB
testcase_42 AC 858 ms
26,624 KB
testcase_43 AC 880 ms
26,240 KB
testcase_44 AC 724 ms
23,808 KB
testcase_45 AC 289 ms
16,384 KB
testcase_46 AC 660 ms
23,552 KB
testcase_47 AC 395 ms
18,560 KB
testcase_48 AC 539 ms
20,736 KB
testcase_49 AC 51 ms
11,648 KB
testcase_50 AC 712 ms
23,808 KB
testcase_51 AC 92 ms
12,288 KB
testcase_52 AC 67 ms
11,776 KB
testcase_53 AC 118 ms
12,800 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
readline=sys.stdin.readline

def Extended_Euclid(n,m):
    stack=[]
    while m:
        stack.append((n,m))
        n,m=m,n%m
    if n>=0:
        x,y=1,0
    else:
        x,y=-1,0
    for i in range(len(stack)-1,-1,-1):
        n,m=stack[i]
        x,y=y,x-(n//m)*y
    return x,y

class MOD:
    def __init__(self,p,e=None):
        self.p=p
        self.e=e
        if self.e==None:
            self.mod=self.p
        else:
            self.mod=self.p**self.e

    def Pow(self,a,n):
        a%=self.mod
        if n>=0:
            return pow(a,n,self.mod)
        else:
            #assert math.gcd(a,self.mod)==1
            x=Extended_Euclid(a,self.mod)[0]
            return pow(x,-n,self.mod)

    def Build_Fact(self,N):
        assert N>=0
        self.factorial=[1]
        if self.e==None:
            for i in range(1,N+1):
                self.factorial.append(self.factorial[-1]*i%self.mod)
        else:
            self.cnt=[0]*(N+1)
            for i in range(1,N+1):
                self.cnt[i]=self.cnt[i-1]
                ii=i
                while ii%self.p==0:
                    ii//=self.p
                    self.cnt[i]+=1
                self.factorial.append(self.factorial[-1]*ii%self.mod)
        self.factorial_inve=[None]*(N+1)
        self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
        for i in range(N-1,-1,-1):
            ii=i+1
            while ii%self.p==0:
                ii//=self.p
            self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod

    def Build_Inverse(self,N):
        self.inverse=[None]*(N+1)
        assert self.p>N
        self.inverse[1]=1
        for n in range(2,N+1):
            if n%self.p==0:
                continue
            a,b=divmod(self.mod,n)
            self.inverse[n]=(-a*self.inverse[b])%self.mod
    
    def Inverse(self,n):
        return self.inverse[n]

    def Fact(self,N):
        if N<0:
            return 0
        retu=self.factorial[N]
        if self.e!=None and self.cnt[N]:
            retu*=pow(self.p,self.cnt[N],self.mod)%self.mod
            retu%=self.mod
        return retu

    def Fact_Inve(self,N):
        if self.e!=None and self.cnt[N]:
            return None
        return self.factorial_inve[N]

    def Comb(self,N,K,divisible_count=False):
        if K<0 or K>N:
            return 0
        retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod
        if self.e!=None:
            cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
            if divisible_count:
                return retu,cnt
            else:
                retu*=pow(self.p,cnt,self.mod)
                retu%=self.mod
        return retu

N,K=map(int,readline().split())
mod=10**9+7
MD=MOD(mod)
MD.Build_Fact(N)
ans=0
x=1
for cnt in range(1,N+1):
    x*=K-cnt+1
    x%=mod
    ans+=x*MD.Fact_Inve(cnt)%mod*MD.Comb(N-1,cnt-1)%mod*pow(2,cnt-1,mod)%mod
    ans%=mod
print(ans)
0