結果
問題 | No.1064 ∪∩∩ / Cup Cap Cap |
ユーザー |
![]() |
提出日時 | 2023-12-08 05:44:46 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 32 ms / 2,000 ms |
コード長 | 3,194 bytes |
コンパイル時間 | 284 ms |
コンパイル使用メモリ | 12,800 KB |
実行使用メモリ | 11,136 KB |
最終ジャッジ日時 | 2024-09-27 02:40:43 |
合計ジャッジ時間 | 2,977 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 36 |
ソースコード
import sysreadline=sys.stdin.readlinedef Divisors(N):divisors=[]for i in range(1,N+1):if i**2>=N:breakelif N%i==0:divisors.append(i)if i**2==N:divisors+=[i]+[N//i for i in divisors[::-1]]else:divisors+=[N//i for i in divisors[::-1]]return divisorsdef Extended_Euclid(n,m):stack=[]while m:stack.append((n,m))n,m=m,n%mif n>=0:x,y=1,0else:x,y=-1,0for i in range(len(stack)-1,-1,-1):n,m=stack[i]x,y=y,x-(n//m)*yreturn x,yclass MOD:def __init__(self,p,e=None):self.p=pself.e=eif self.e==None:self.mod=self.pelse:self.mod=self.p**self.edef Pow(self,a,n):a%=self.modif n>=0:return pow(a,n,self.mod)else:#assert math.gcd(a,self.mod)==1x=Extended_Euclid(a,self.mod)[0]return pow(x,-n,self.mod)def Build_Fact(self,N):assert N>=0self.factorial=[1]if self.e==None:for i in range(1,N+1):self.factorial.append(self.factorial[-1]*i%self.mod)else:self.cnt=[0]*(N+1)for i in range(1,N+1):self.cnt[i]=self.cnt[i-1]ii=iwhile ii%self.p==0:ii//=self.pself.cnt[i]+=1self.factorial.append(self.factorial[-1]*ii%self.mod)self.factorial_inve=[None]*(N+1)self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)for i in range(N-1,-1,-1):ii=i+1while ii%self.p==0:ii//=self.pself.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.moddef Build_Inverse(self,N):self.inverse=[None]*(N+1)assert self.p>Nself.inverse[1]=1for n in range(2,N+1):if n%self.p==0:continuea,b=divmod(self.mod,n)self.inverse[n]=(-a*self.inverse[b])%self.moddef Inverse(self,n):return self.inverse[n]def Fact(self,N):if N<0:return 0retu=self.factorial[N]if self.e!=None and self.cnt[N]:retu*=pow(self.p,self.cnt[N],self.mod)%self.modretu%=self.modreturn retudef Fact_Inve(self,N):if self.e!=None and self.cnt[N]:return Nonereturn self.factorial_inve[N]def Comb(self,N,K,divisible_count=False):if K<0 or K>N:return 0retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.modif self.e!=None:cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]if divisible_count:return retu,cntelse:retu*=pow(self.p,cnt,self.mod)retu%=self.modreturn retua,b,c,d=map(int,readline().split())A=2B=a-cC=b-dif B*B-4*A*C<=0:if B*B-4*A*C<0:ans="No"else:ans="Yes"print(ans)else:p,q=(a+c)/2,(b+d)/2print(p,q)