結果

問題 No.2580 Hyperinflation
ユーザー NyaanNyaanNyaanNyaan
提出日時 2023-12-08 07:07:27
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 62,682 bytes
コンパイル時間 12,287 ms
コンパイル使用メモリ 411,408 KB
実行使用メモリ 22,120 KB
最終ジャッジ日時 2024-09-27 02:41:43
合計ジャッジ時間 20,824 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 31 ms
21,376 KB
testcase_01 AC 31 ms
15,744 KB
testcase_02 AC 31 ms
15,872 KB
testcase_03 AC 31 ms
15,872 KB
testcase_04 AC 32 ms
15,872 KB
testcase_05 AC 31 ms
15,744 KB
testcase_06 AC 31 ms
15,872 KB
testcase_07 AC 32 ms
15,872 KB
testcase_08 AC 33 ms
15,872 KB
testcase_09 AC 31 ms
16,000 KB
testcase_10 AC 32 ms
16,000 KB
testcase_11 AC 32 ms
15,872 KB
testcase_12 AC 31 ms
15,872 KB
testcase_13 AC 32 ms
15,872 KB
testcase_14 AC 36 ms
16,000 KB
testcase_15 AC 34 ms
16,128 KB
testcase_16 AC 39 ms
16,000 KB
testcase_17 AC 31 ms
15,872 KB
testcase_18 AC 331 ms
16,384 KB
testcase_19 AC 330 ms
16,384 KB
testcase_20 AC 330 ms
16,256 KB
testcase_21 AC 332 ms
16,384 KB
testcase_22 AC 336 ms
16,256 KB
testcase_23 TLE -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #





#define NDEBUG

#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2")


using namespace std;


#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>



namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
 vector<T> ret(v.size() + 1);
 if (rev) {
 for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
 } else {
 for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
 }
 return ret;
};

} 




namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
 return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
 return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
 if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
} 




namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
 os << p.first << " " << p.second;
 return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
 is >> p.first >> p.second;
 return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
 int s = (int)v.size();
 for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
 return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
 for (auto &x : v) is >> x;
 return is;
}

istream &operator>>(istream &is, __int128_t &x) {
 string S;
 is >> S;
 x = 0;
 int flag = 0;
 for (auto &c : S) {
 if (c == '-') {
 flag = true;
 continue;
 }
 x *= 10;
 x += c - '0';
 }
 if (flag) x = -x;
 return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
 string S;
 is >> S;
 x = 0;
 for (auto &c : S) {
 x *= 10;
 x += c - '0';
 }
 return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
 if (x == 0) return os << 0;
 if (x < 0) os << '-', x = -x;
 string S;
 while (x) S.push_back('0' + x % 10), x /= 10;
 reverse(begin(S), end(S));
 return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
 if (x == 0) return os << 0;
 string S;
 while (x) S.push_back('0' + x % 10), x /= 10;
 reverse(begin(S), end(S));
 return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
 cin >> t;
 in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
 cout << t;
 if (sizeof...(u)) cout << sep;
 out(u...);
}

struct IoSetupNya {
 IoSetupNya() {
 cin.tie(nullptr);
 ios::sync_with_stdio(false);
 cout << fixed << setprecision(15);
 cerr << fixed << setprecision(7);
 }
} iosetupnya;

} 





#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif




#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...) \
 int __VA_ARGS__; \
 in(__VA_ARGS__)
#define inl(...) \
 long long __VA_ARGS__; \
 in(__VA_ARGS__)
#define ins(...) \
 string __VA_ARGS__; \
 in(__VA_ARGS__)
#define in2(s, t) \
 for (int i = 0; i < (int)s.size(); i++) { \
 in(s[i], t[i]); \
 }
#define in3(s, t, u) \
 for (int i = 0; i < (int)s.size(); i++) { \
 in(s[i], t[i], u[i]); \
 }
#define in4(s, t, u, v) \
 for (int i = 0; i < (int)s.size(); i++) { \
 in(s[i], t[i], u[i], v[i]); \
 }
#define die(...) \
 do { \
 Nyaan::out(__VA_ARGS__); \
 return; \
 } while (0)


namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }






using namespace std;




using namespace std;

namespace internal {
template <typename T>
using is_broadly_integral =
 typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||
 is_same_v<T, __uint128_t>,
 true_type, false_type>::type;

template <typename T>
using is_broadly_signed =
 typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,
 true_type, false_type>::type;

template <typename T>
using is_broadly_unsigned =
 typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,
 true_type, false_type>::type;

#define ENABLE_VALUE(x) \
 template <typename T> \
 constexpr bool x##_v = x<T>::value;

ENABLE_VALUE(is_broadly_integral);
ENABLE_VALUE(is_broadly_signed);
ENABLE_VALUE(is_broadly_unsigned);
#undef ENABLE_VALUE

#define ENABLE_HAS_TYPE(var) \
 template <class, class = void> \
 struct has_##var : false_type {}; \
 template <class T> \
 struct has_##var<T, void_t<typename T::var>> : true_type {}; \
 template <class T> \
 constexpr auto has_##var##_v = has_##var<T>::value;

#define ENABLE_HAS_VAR(var) \
 template <class, class = void> \
 struct has_##var : false_type {}; \
 template <class T> \
 struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \
 template <class T> \
 constexpr auto has_##var##_v = has_##var<T>::value;

} 




template <uint32_t mod>
struct LazyMontgomeryModInt {
 using mint = LazyMontgomeryModInt;
 using i32 = int32_t;
 using u32 = uint32_t;
 using u64 = uint64_t;

 static constexpr u32 get_r() {
 u32 ret = mod;
 for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
 return ret;
 }

 static constexpr u32 r = get_r();
 static constexpr u32 n2 = -u64(mod) % mod;
 static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
 static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
 static_assert(r * mod == 1, "this code has bugs.");

 u32 a;

 constexpr LazyMontgomeryModInt() : a(0) {}
 constexpr LazyMontgomeryModInt(const int64_t &b)
 : a(reduce(u64(b % mod + mod) * n2)){};

 static constexpr u32 reduce(const u64 &b) {
 return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
 }

 constexpr mint &operator+=(const mint &b) {
 if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
 return *this;
 }

 constexpr mint &operator-=(const mint &b) {
 if (i32(a -= b.a) < 0) a += 2 * mod;
 return *this;
 }

 constexpr mint &operator*=(const mint &b) {
 a = reduce(u64(a) * b.a);
 return *this;
 }

 constexpr mint &operator/=(const mint &b) {
 *this *= b.inverse();
 return *this;
 }

 constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
 constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
 constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
 constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
 constexpr bool operator==(const mint &b) const {
 return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
 }
 constexpr bool operator!=(const mint &b) const {
 return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
 }
 constexpr mint operator-() const { return mint() - mint(*this); }
 constexpr mint operator+() const { return mint(*this); }

 constexpr mint pow(u64 n) const {
 mint ret(1), mul(*this);
 while (n > 0) {
 if (n & 1) ret *= mul;
 mul *= mul;
 n >>= 1;
 }
 return ret;
 }

 constexpr mint inverse() const {
 int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
 while (y > 0) {
 t = x / y;
 x -= t * y, u -= t * v;
 tmp = x, x = y, y = tmp;
 tmp = u, u = v, v = tmp;
 }
 return mint{u};
 }

 friend ostream &operator<<(ostream &os, const mint &b) {
 return os << b.get();
 }

 friend istream &operator>>(istream &is, mint &b) {
 int64_t t;
 is >> t;
 b = LazyMontgomeryModInt<mod>(t);
 return (is);
 }

 constexpr u32 get() const {
 u32 ret = reduce(a);
 return ret >= mod ? ret - mod : ret;
 }

 static constexpr u32 get_mod() { return mod; }
};


template <typename mint>
struct NTT {
 static constexpr uint32_t get_pr() {
 uint32_t _mod = mint::get_mod();
 using u64 = uint64_t;
 u64 ds[32] = {};
 int idx = 0;
 u64 m = _mod - 1;
 for (u64 i = 2; i * i <= m; ++i) {
 if (m % i == 0) {
 ds[idx++] = i;
 while (m % i == 0) m /= i;
 }
 }
 if (m != 1) ds[idx++] = m;

 uint32_t _pr = 2;
 while (1) {
 int flg = 1;
 for (int i = 0; i < idx; ++i) {
 u64 a = _pr, b = (_mod - 1) / ds[i], r = 1;
 while (b) {
 if (b & 1) r = r * a % _mod;
 a = a * a % _mod;
 b >>= 1;
 }
 if (r == 1) {
 flg = 0;
 break;
 }
 }
 if (flg == 1) break;
 ++_pr;
 }
 return _pr;
 };

 static constexpr uint32_t mod = mint::get_mod();
 static constexpr uint32_t pr = get_pr();
 static constexpr int level = __builtin_ctzll(mod - 1);
 mint dw[level], dy[level];

 void setwy(int k) {
 mint w[level], y[level];
 w[k - 1] = mint(pr).pow((mod - 1) / (1 << k));
 y[k - 1] = w[k - 1].inverse();
 for (int i = k - 2; i > 0; --i)
 w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
 dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
 for (int i = 3; i < k; ++i) {
 dw[i] = dw[i - 1] * y[i - 2] * w[i];
 dy[i] = dy[i - 1] * w[i - 2] * y[i];
 }
 }

 NTT() { setwy(level); }

 void fft4(vector<mint> &a, int k) {
 if ((int)a.size() <= 1) return;
 if (k == 1) {
 mint a1 = a[1];
 a[1] = a[0] - a[1];
 a[0] = a[0] + a1;
 return;
 }
 if (k & 1) {
 int v = 1 << (k - 1);
 for (int j = 0; j < v; ++j) {
 mint ajv = a[j + v];
 a[j + v] = a[j] - ajv;
 a[j] += ajv;
 }
 }
 int u = 1 << (2 + (k & 1));
 int v = 1 << (k - 2 - (k & 1));
 mint one = mint(1);
 mint imag = dw[1];
 while (v) {
 
 {
 int j0 = 0;
 int j1 = v;
 int j2 = j1 + v;
 int j3 = j2 + v;
 for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
 mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
 mint t0p2 = t0 + t2, t1p3 = t1 + t3;
 mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
 a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
 a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
 }
 }
 
 mint ww = one, xx = one * dw[2], wx = one;
 for (int jh = 4; jh < u;) {
 ww = xx * xx, wx = ww * xx;
 int j0 = jh * v;
 int je = j0 + v;
 int j2 = je + v;
 for (; j0 < je; ++j0, ++j2) {
 mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,
 t3 = a[j2 + v] * wx;
 mint t0p2 = t0 + t2, t1p3 = t1 + t3;
 mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
 a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
 a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
 }
 xx *= dw[__builtin_ctzll((jh += 4))];
 }
 u <<= 2;
 v >>= 2;
 }
 }

 void ifft4(vector<mint> &a, int k) {
 if ((int)a.size() <= 1) return;
 if (k == 1) {
 mint a1 = a[1];
 a[1] = a[0] - a[1];
 a[0] = a[0] + a1;
 return;
 }
 int u = 1 << (k - 2);
 int v = 1;
 mint one = mint(1);
 mint imag = dy[1];
 while (u) {
 
 {
 int j0 = 0;
 int j1 = v;
 int j2 = v + v;
 int j3 = j2 + v;
 for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
 mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
 mint t0p1 = t0 + t1, t2p3 = t2 + t3;
 mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
 a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
 a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
 }
 }
 
 mint ww = one, xx = one * dy[2], yy = one;
 u <<= 2;
 for (int jh = 4; jh < u;) {
 ww = xx * xx, yy = xx * imag;
 int j0 = jh * v;
 int je = j0 + v;
 int j2 = je + v;
 for (; j0 < je; ++j0, ++j2) {
 mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
 mint t0p1 = t0 + t1, t2p3 = t2 + t3;
 mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
 a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
 a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
 }
 xx *= dy[__builtin_ctzll(jh += 4)];
 }
 u >>= 4;
 v <<= 2;
 }
 if (k & 1) {
 u = 1 << (k - 1);
 for (int j = 0; j < u; ++j) {
 mint ajv = a[j] - a[j + u];
 a[j] += a[j + u];
 a[j + u] = ajv;
 }
 }
 }

 void ntt(vector<mint> &a) {
 if ((int)a.size() <= 1) return;
 fft4(a, __builtin_ctz(a.size()));
 }

 void intt(vector<mint> &a) {
 if ((int)a.size() <= 1) return;
 ifft4(a, __builtin_ctz(a.size()));
 mint iv = mint(a.size()).inverse();
 for (auto &x : a) x *= iv;
 }

 vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
 int l = a.size() + b.size() - 1;
 if (min<int>(a.size(), b.size()) <= 40) {
 vector<mint> s(l);
 for (int i = 0; i < (int)a.size(); ++i)
 for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
 return s;
 }
 int k = 2, M = 4;
 while (M < l) M <<= 1, ++k;
 setwy(k);
 vector<mint> s(M);
 for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i];
 fft4(s, k);
 if (a.size() == b.size() && a == b) {
 for (int i = 0; i < M; ++i) s[i] *= s[i];
 } else {
 vector<mint> t(M);
 for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i];
 fft4(t, k);
 for (int i = 0; i < M; ++i) s[i] *= t[i];
 }
 ifft4(s, k);
 s.resize(l);
 mint invm = mint(M).inverse();
 for (int i = 0; i < l; ++i) s[i] *= invm;
 return s;
 }

 void ntt_doubling(vector<mint> &a) {
 int M = (int)a.size();
 auto b = a;
 intt(b);
 mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1));
 for (int i = 0; i < M; i++) b[i] *= r, r *= zeta;
 ntt(b);
 copy(begin(b), end(b), back_inserter(a));
 }
};


namespace ArbitraryNTT {
using i64 = int64_t;
using u128 = __uint128_t;
constexpr int32_t m0 = 167772161;
constexpr int32_t m1 = 469762049;
constexpr int32_t m2 = 754974721;
using mint0 = LazyMontgomeryModInt<m0>;
using mint1 = LazyMontgomeryModInt<m1>;
using mint2 = LazyMontgomeryModInt<m2>;
constexpr int r01 = mint1(m0).inverse().get();
constexpr int r02 = mint2(m0).inverse().get();
constexpr int r12 = mint2(m1).inverse().get();
constexpr int r02r12 = i64(r02) * r12 % m2;
constexpr i64 w1 = m0;
constexpr i64 w2 = i64(m0) * m1;

template <typename T, typename submint>
vector<submint> mul(const vector<T> &a, const vector<T> &b) {
 static NTT<submint> ntt;
 vector<submint> s(a.size()), t(b.size());
 for (int i = 0; i < (int)a.size(); ++i) s[i] = i64(a[i] % submint::get_mod());
 for (int i = 0; i < (int)b.size(); ++i) t[i] = i64(b[i] % submint::get_mod());
 return ntt.multiply(s, t);
}

template <typename T>
vector<int> multiply(const vector<T> &s, const vector<T> &t, int mod) {
 auto d0 = mul<T, mint0>(s, t);
 auto d1 = mul<T, mint1>(s, t);
 auto d2 = mul<T, mint2>(s, t);
 int n = d0.size();
 vector<int> ret(n);
 const int W1 = w1 % mod;
 const int W2 = w2 % mod;
 for (int i = 0; i < n; i++) {
 int n1 = d1[i].get(), n2 = d2[i].get(), a = d0[i].get();
 int b = i64(n1 + m1 - a) * r01 % m1;
 int c = (i64(n2 + m2 - a) * r02r12 + i64(m2 - b) * r12) % m2;
 ret[i] = (i64(a) + i64(b) * W1 + i64(c) * W2) % mod;
 }
 return ret;
}

template <typename mint>
vector<mint> multiply(const vector<mint> &a, const vector<mint> &b) {
 if (a.size() == 0 && b.size() == 0) return {};
 if (min<int>(a.size(), b.size()) < 128) {
 vector<mint> ret(a.size() + b.size() - 1);
 for (int i = 0; i < (int)a.size(); ++i)
 for (int j = 0; j < (int)b.size(); ++j) ret[i + j] += a[i] * b[j];
 return ret;
 }
 vector<int> s(a.size()), t(b.size());
 for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i].get();
 for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i].get();
 vector<int> u = multiply<int>(s, t, mint::get_mod());
 vector<mint> ret(u.size());
 for (int i = 0; i < (int)u.size(); ++i) ret[i] = mint(u[i]);
 return ret;
}

template <typename T>
vector<u128> multiply_u128(const vector<T> &s, const vector<T> &t) {
 if (s.size() == 0 && t.size() == 0) return {};
 if (min<int>(s.size(), t.size()) < 128) {
 vector<u128> ret(s.size() + t.size() - 1);
 for (int i = 0; i < (int)s.size(); ++i)
 for (int j = 0; j < (int)t.size(); ++j) ret[i + j] += i64(s[i]) * t[j];
 return ret;
 }
 auto d0 = mul<T, mint0>(s, t);
 auto d1 = mul<T, mint1>(s, t);
 auto d2 = mul<T, mint2>(s, t);
 int n = d0.size();
 vector<u128> ret(n);
 for (int i = 0; i < n; i++) {
 i64 n1 = d1[i].get(), n2 = d2[i].get();
 i64 a = d0[i].get();
 i64 b = (n1 + m1 - a) * r01 % m1;
 i64 c = ((n2 + m2 - a) * r02r12 + (m2 - b) * r12) % m2;
 ret[i] = a + b * w1 + u128(c) * w2;
 }
 return ret;
}
} 


namespace MultiPrecisionIntegerImpl {
struct TENS {
 static constexpr int offset = 30;
 constexpr TENS() : _tend() {
 _tend[offset] = 1;
 for (int i = 1; i <= offset; i++) {
 _tend[offset + i] = _tend[offset + i - 1] * 10.0;
 _tend[offset - i] = 1.0 / _tend[offset + i];
 }
 }
 long double ten_ld(int n) const {
 assert(-offset <= n and n <= offset);
 return _tend[n + offset];
 }

 private:
 long double _tend[offset * 2 + 1];
};
} 


struct MultiPrecisionInteger {
 using M = MultiPrecisionInteger;
 inline constexpr static MultiPrecisionIntegerImpl::TENS tens = {};

 static constexpr int D = 1000000000;
 static constexpr int logD = 9;
 bool neg;
 vector<int> dat;

 MultiPrecisionInteger() : neg(false), dat() {}

 MultiPrecisionInteger(bool n, const vector<int>& d) : neg(n), dat(d) {}

 template <typename I,
 enable_if_t<internal::is_broadly_integral_v<I>>* = nullptr>
 MultiPrecisionInteger(I x) : neg(false) {
 if constexpr (internal::is_broadly_signed_v<I>) {
 if (x < 0) neg = true, x = -x;
 }
 while (x) dat.push_back(x % D), x /= D;
 }

 MultiPrecisionInteger(const string& S) : neg(false) {
 assert(!S.empty());
 if (S.size() == 1u && S[0] == '0') return;
 int l = 0;
 if (S[0] == '-') ++l, neg = true;
 for (int ie = S.size(); l < ie; ie -= logD) {
 int is = max(l, ie - logD);
 long long x = 0;
 for (int i = is; i < ie; i++) x = x * 10 + S[i] - '0';
 dat.push_back(x);
 }
 }

 friend M operator+(const M& lhs, const M& rhs) {
 if (lhs.neg == rhs.neg) return {lhs.neg, _add(lhs.dat, rhs.dat)};
 if (_leq(lhs.dat, rhs.dat)) {
 
 auto c = _sub(rhs.dat, lhs.dat);
 bool n = _is_zero(c) ? false : rhs.neg;
 return {n, c};
 }
 auto c = _sub(lhs.dat, rhs.dat);
 bool n = _is_zero(c) ? false : lhs.neg;
 return {n, c};
 }
 friend M operator-(const M& lhs, const M& rhs) { return lhs + (-rhs); }

 friend M operator*(const M& lhs, const M& rhs) {
 auto c = _mul(lhs.dat, rhs.dat);
 bool n = _is_zero(c) ? false : (lhs.neg ^ rhs.neg);
 return {n, c};
 }
 friend pair<M, M> divmod(const M& lhs, const M& rhs) {
 auto dm = _divmod_newton(lhs.dat, rhs.dat);
 bool dn = _is_zero(dm.first) ? false : lhs.neg != rhs.neg;
 bool mn = _is_zero(dm.second) ? false : lhs.neg;
 return {M{dn, dm.first}, M{mn, dm.second}};
 }
 friend M operator/(const M& lhs, const M& rhs) {
 return divmod(lhs, rhs).first;
 }
 friend M operator%(const M& lhs, const M& rhs) {
 return divmod(lhs, rhs).second;
 }

 M& operator+=(const M& rhs) { return (*this) = (*this) + rhs; }
 M& operator-=(const M& rhs) { return (*this) = (*this) - rhs; }
 M& operator*=(const M& rhs) { return (*this) = (*this) * rhs; }
 M& operator/=(const M& rhs) { return (*this) = (*this) / rhs; }
 M& operator%=(const M& rhs) { return (*this) = (*this) % rhs; }

 M operator-() const {
 if (is_zero()) return *this;
 return {!neg, dat};
 }
 M operator+() const { return *this; }
 friend M abs(const M& m) { return {false, m.dat}; }
 bool is_zero() const { return _is_zero(dat); }

 friend bool operator==(const M& lhs, const M& rhs) {
 return lhs.neg == rhs.neg && lhs.dat == rhs.dat;
 }
 friend bool operator!=(const M& lhs, const M& rhs) {
 return lhs.neg != rhs.neg || lhs.dat != rhs.dat;
 }
 friend bool operator<(const M& lhs, const M& rhs) {
 if (lhs == rhs) return false;
 return _neq_lt(lhs, rhs);
 }
 friend bool operator<=(const M& lhs, const M& rhs) {
 if (lhs == rhs) return true;
 return _neq_lt(lhs, rhs);
 }
 friend bool operator>(const M& lhs, const M& rhs) {
 if (lhs == rhs) return false;
 return _neq_lt(rhs, lhs);
 }
 friend bool operator>=(const M& lhs, const M& rhs) {
 if (lhs == rhs) return true;
 return _neq_lt(rhs, lhs);
 }

 
 
 pair<long double, int> dfp() const {
 if (is_zero()) return {0, 0};
 int l = max<int>(0, _size() - 3);
 int b = logD * l;
 string prefix{};
 for (int i = _size() - 1; i >= l; i--) {
 prefix += _itos(dat[i], i != _size() - 1);
 }
 b += prefix.size() - 1;
 long double a = 0;
 for (auto& c : prefix) a = a * 10.0 + (c - '0');
 a *= tens.ten_ld(-((int)prefix.size()) + 1);
 a = clamp<long double>(a, 1.0, nextafterl(10.0, 1.0));
 if (neg) a = -a;
 return {a, b};
 }
 string to_string() const {
 if (is_zero()) return "0";
 string res;
 if (neg) res.push_back('-');
 for (int i = _size() - 1; i >= 0; i--) {
 res += _itos(dat[i], i != _size() - 1);
 }
 return res;
 }
 long double to_ld() const {
 auto [a, b] = dfp();
 if (-tens.offset <= b and b <= tens.offset) {
 return a * tens.ten_ld(b);
 }
 return a * powl(10, b);
 }
 long long to_ll() const {
 long long res = _to_ll(dat);
 return neg ? -res : res;
 }
 __int128_t to_i128() const {
 __int128_t res = _to_i128(dat);
 return neg ? -res : res;
 }

 friend istream& operator>>(istream& is, M& m) {
 string s;
 is >> s;
 m = M{s};
 return is;
 }

 friend ostream& operator<<(ostream& os, const M& m) {
 return os << m.to_string();
 }

 
 static void _test_private_function(const M&, const M&);

 private:
 
 int _size() const { return dat.size(); }
 
 static bool _eq(const vector<int>& a, const vector<int>& b) { return a == b; }
 
 static bool _lt(const vector<int>& a, const vector<int>& b) {
 if (a.size() != b.size()) return a.size() < b.size();
 for (int i = a.size() - 1; i >= 0; i--) {
 if (a[i] != b[i]) return a[i] < b[i];
 }
 return false;
 }
 
 static bool _leq(const vector<int>& a, const vector<int>& b) {
 return _eq(a, b) || _lt(a, b);
 }
 
 static bool _neq_lt(const M& lhs, const M& rhs) {
 assert(lhs != rhs);
 if (lhs.neg != rhs.neg) return lhs.neg;
 bool f = _lt(lhs.dat, rhs.dat);
 if (f) return !lhs.neg;
 return lhs.neg;
 }
 
 static bool _is_zero(const vector<int>& a) { return a.empty(); }
 
 static bool _is_one(const vector<int>& a) {
 return (int)a.size() == 1 && a[0] == 1;
 }
 
 static void _shrink(vector<int>& a) {
 while (a.size() && a.back() == 0) a.pop_back();
 }
 
 void _shrink() {
 while (_size() && dat.back() == 0) dat.pop_back();
 }
 
 static vector<int> _add(const vector<int>& a, const vector<int>& b) {
 vector<int> c(max(a.size(), b.size()) + 1);
 for (int i = 0; i < (int)a.size(); i++) c[i] += a[i];
 for (int i = 0; i < (int)b.size(); i++) c[i] += b[i];
 for (int i = 0; i < (int)c.size() - 1; i++) {
 if (c[i] >= D) c[i] -= D, c[i + 1]++;
 }
 _shrink(c);
 return c;
 }
 
 static vector<int> _sub(const vector<int>& a, const vector<int>& b) {
 assert(_leq(b, a));
 vector<int> c{a};
 int borrow = 0;
 for (int i = 0; i < (int)a.size(); i++) {
 if (i < (int)b.size()) borrow += b[i];
 c[i] -= borrow;
 borrow = 0;
 if (c[i] < 0) c[i] += D, borrow = 1;
 }
 assert(borrow == 0);
 _shrink(c);
 return c;
 }
 
 static vector<int> _mul_fft(const vector<int>& a, const vector<int>& b) {
 if (a.empty() || b.empty()) return {};
 auto m = ArbitraryNTT::multiply_u128(a, b);
 vector<int> c;
 c.reserve(m.size() + 3);
 __uint128_t x = 0;
 for (int i = 0;; i++) {
 if (i >= (int)m.size() && x == 0) break;
 if (i < (int)m.size()) x += m[i];
 c.push_back(x % D);
 x /= D;
 }
 _shrink(c);
 return c;
 }
 
 static vector<int> _mul_naive(const vector<int>& a, const vector<int>& b) {
 if (a.empty() || b.empty()) return {};
 vector<long long> prod(a.size() + b.size() - 1 + 1);
 for (int i = 0; i < (int)a.size(); i++) {
 for (int j = 0; j < (int)b.size(); j++) {
 long long p = 1LL * a[i] * b[j];
 prod[i + j] += p;
 if (prod[i + j] >= (4LL * D * D)) {
 prod[i + j] -= 4LL * D * D;
 prod[i + j + 1] += 4LL * D;
 }
 }
 }
 vector<int> c(prod.size() + 1);
 long long x = 0;
 int i = 0;
 for (; i < (int)prod.size(); i++) x += prod[i], c[i] = x % D, x /= D;
 while (x) c[i] = x % D, x /= D, i++;
 _shrink(c);
 return c;
 }
 
 static vector<int> _mul(const vector<int>& a, const vector<int>& b) {
 if (_is_zero(a) || _is_zero(b)) return {};
 if (_is_one(a)) return b;
 if (_is_one(b)) return a;
 if (min<int>(a.size(), b.size()) <= 128) {
 return a.size() < b.size() ? _mul_naive(b, a) : _mul_naive(a, b);
 }
 return _mul_fft(a, b);
 }
 
 static pair<vector<int>, vector<int>> _divmod_li(const vector<int>& a,
 const vector<int>& b) {
 assert(0 <= (int)a.size() && (int)a.size() <= 2);
 assert((int)b.size() == 1);
 long long va = _to_ll(a);
 int vb = b[0];
 return {_integer_to_vec(va / vb), _integer_to_vec(va % vb)};
 }
 
 static pair<vector<int>, vector<int>> _divmod_ll(const vector<int>& a,
 const vector<int>& b) {
 assert(0 <= (int)a.size() && (int)a.size() <= 2);
 assert(1 <= (int)b.size() && (int)b.size() <= 2);
 long long va = _to_ll(a), vb = _to_ll(b);
 return {_integer_to_vec(va / vb), _integer_to_vec(va % vb)};
 }
 
 static pair<vector<int>, vector<int>> _divmod_1e9(const vector<int>& a,
 const vector<int>& b) {
 assert((int)b.size() == 1);
 if (b[0] == 1) return {a, {}};
 if ((int)a.size() <= 2) return _divmod_li(a, b);
 vector<int> quo(a.size());
 long long d = 0;
 int b0 = b[0];
 for (int i = a.size() - 1; i >= 0; i--) {
 d = d * D + a[i];
 assert(d < 1LL * D * b0);
 int q = d / b0, r = d % b0;
 quo[i] = q, d = r;
 }
 _shrink(quo);
 return {quo, d ? vector<int>{int(d)} : vector<int>{}};
 }
 
 static pair<vector<int>, vector<int>> _divmod_naive(const vector<int>& a,
 const vector<int>& b) {
 if (_is_zero(b)) {
 cerr << "Divide by Zero Exception" << endl;
 exit(1);
 }
 assert(1 <= (int)b.size());
 if ((int)b.size() == 1) return _divmod_1e9(a, b);
 if (max<int>(a.size(), b.size()) <= 2) return _divmod_ll(a, b);
 if (_lt(a, b)) return {{}, a};
 
 int norm = D / (b.back() + 1);
 vector<int> x = _mul(a, {norm});
 vector<int> y = _mul(b, {norm});
 int yb = y.back();
 vector<int> quo(x.size() - y.size() + 1);
 vector<int> rem(x.end() - y.size(), x.end());
 for (int i = quo.size() - 1; i >= 0; i--) {
 if (rem.size() < y.size()) {
 
 } else if (rem.size() == y.size()) {
 if (_leq(y, rem)) {
 quo[i] = 1, rem = _sub(rem, y);
 }
 } else {
 assert(y.size() + 1 == rem.size());
 long long rb = 1LL * rem[rem.size() - 1] * D + rem[rem.size() - 2];
 int q = rb / yb;
 vector<int> yq = _mul(y, {q});
 
 while (_lt(rem, yq)) q--, yq = _sub(yq, y);
 rem = _sub(rem, yq);
 while (_leq(y, rem)) q++, rem = _sub(rem, y);
 quo[i] = q;
 }
 if (i) rem.insert(begin(rem), x[i - 1]);
 }
 _shrink(quo), _shrink(rem);
 auto [q2, r2] = _divmod_1e9(rem, {norm});
 assert(_is_zero(r2));
 return {quo, q2};
 }

 
 static pair<vector<int>, vector<int>> _divmod_dc(const vector<int>& a,
 const vector<int>& b);

 
 static vector<int> _calc_inv(const vector<int>& a, int deg) {
 assert(!a.empty() && D / 2 <= a.back() and a.back() < D);
 int k = deg, c = a.size();
 while (k > 64) k = (k + 1) / 2;
 vector<int> z(c + k + 1);
 z.back() = 1;
 z = _divmod_naive(z, a).first;
 while (k < deg) {
 vector<int> s = _mul(z, z);
 s.insert(begin(s), 0);
 int d = min(c, 2 * k + 1);
 vector<int> t{end(a) - d, end(a)}, u = _mul(s, t);
 u.erase(begin(u), begin(u) + d);
 vector<int> w(k + 1), w2 = _add(z, z);
 copy(begin(w2), end(w2), back_inserter(w));
 z = _sub(w, u);
 z.erase(begin(z));
 k *= 2;
 }
 z.erase(begin(z), begin(z) + k - deg);
 return z;
 }

 static pair<vector<int>, vector<int>> _divmod_newton(const vector<int>& a,
 const vector<int>& b) {
 if (_is_zero(b)) {
 cerr << "Divide by Zero Exception" << endl;
 exit(1);
 }
 if ((int)b.size() <= 64) return _divmod_naive(a, b);
 if ((int)a.size() - (int)b.size() <= 64) return _divmod_naive(a, b);
 int norm = D / (b.back() + 1);
 vector<int> x = _mul(a, {norm});
 vector<int> y = _mul(b, {norm});
 int s = x.size(), t = y.size();
 int deg = s - t + 2;
 vector<int> z = _calc_inv(y, deg);
 vector<int> q = _mul(x, z);
 q.erase(begin(q), begin(q) + t + deg);
 vector<int> yq = _mul(y, {q});
 while (_lt(x, yq)) q = _sub(q, {1}), yq = _sub(yq, y);
 vector<int> r = _sub(x, yq);
 while (_leq(y, r)) q = _add(q, {1}), r = _sub(r, y);
 _shrink(q), _shrink(r);
 auto [q2, r2] = _divmod_1e9(r, {norm});
 assert(_is_zero(r2));
 return {q, q2};
 }

 
 
 static string _itos(int x, bool zero_padding) {
 assert(0 <= x && x < D);
 string res;
 for (int i = 0; i < logD; i++) {
 res.push_back('0' + x % 10), x /= 10;
 }
 if (!zero_padding) {
 while (res.size() && res.back() == '0') res.pop_back();
 assert(!res.empty());
 }
 reverse(begin(res), end(res));
 return res;
 }

 
 template <typename I,
 enable_if_t<internal::is_broadly_integral_v<I>>* = nullptr>
 static vector<int> _integer_to_vec(I x) {
 if constexpr (internal::is_broadly_signed_v<I>) {
 assert(x >= 0);
 }
 vector<int> res;
 while (x) res.push_back(x % D), x /= D;
 return res;
 }

 static long long _to_ll(const vector<int>& a) {
 long long res = 0;
 for (int i = (int)a.size() - 1; i >= 0; i--) res = res * D + a[i];
 return res;
 }

 static __int128_t _to_i128(const vector<int>& a) {
 __int128_t res = 0;
 for (int i = (int)a.size() - 1; i >= 0; i--) res = res * D + a[i];
 return res;
 }

 static void _dump(const vector<int>& a, string s = "") {
 if (!s.empty()) cerr << s << " : ";
 cerr << "{ ";
 for (int i = 0; i < (int)a.size(); i++) cerr << a[i] << ", ";
 cerr << "}" << endl;
 }
};

using bigint = MultiPrecisionInteger;












using namespace std;




template <typename T>
struct Binomial {
 vector<T> f, g, h;
 Binomial(int MAX = 0) {
 assert(T::get_mod() != 0 && "Binomial<mint>()");
 f.resize(1, T{1});
 g.resize(1, T{1});
 h.resize(1, T{1});
 if (MAX > 0) extend(MAX + 1);
 }

 void extend(int m = -1) {
 int n = f.size();
 if (m == -1) m = n * 2;
 m = min<int>(m, T::get_mod());
 if (n >= m) return;
 f.resize(m);
 g.resize(m);
 h.resize(m);
 for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
 g[m - 1] = f[m - 1].inverse();
 h[m - 1] = g[m - 1] * f[m - 2];
 for (int i = m - 2; i >= n; i--) {
 g[i] = g[i + 1] * T(i + 1);
 h[i] = g[i] * f[i - 1];
 }
 }

 T fac(int i) {
 if (i < 0) return T(0);
 while (i >= (int)f.size()) extend();
 return f[i];
 }

 T finv(int i) {
 if (i < 0) return T(0);
 while (i >= (int)g.size()) extend();
 return g[i];
 }

 T inv(int i) {
 if (i < 0) return -inv(-i);
 while (i >= (int)h.size()) extend();
 return h[i];
 }

 T C(int n, int r) {
 if (n < 0 || n < r || r < 0) return T(0);
 return fac(n) * finv(n - r) * finv(r);
 }

 inline T operator()(int n, int r) { return C(n, r); }

 template <typename I>
 T multinomial(const vector<I>& r) {
 static_assert(is_integral<I>::value == true);
 int n = 0;
 for (auto& x : r) {
 if (x < 0) return T(0);
 n += x;
 }
 T res = fac(n);
 for (auto& x : r) res *= finv(x);
 return res;
 }

 template <typename I>
 T operator()(const vector<I>& r) {
 return multinomial(r);
 }

 T C_naive(int n, int r) {
 if (n < 0 || n < r || r < 0) return T(0);
 T ret = T(1);
 r = min(r, n - r);
 for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
 return ret;
 }

 T P(int n, int r) {
 if (n < 0 || n < r || r < 0) return T(0);
 return fac(n) * finv(n - r);
 }

 
 T H(int n, int r) {
 if (n < 0 || r < 0) return T(0);
 return r == 0 ? 1 : C(n + r - 1, r);
 }
};




template <typename mint>
mint lagrange_interpolation(const vector<mint>& y, long long x,
 Binomial<mint>& C) {
 int N = (int)y.size() - 1;
 if (x <= N) return y[x];
 mint ret = 0;
 vector<mint> dp(N + 1, 1), pd(N + 1, 1);
 mint a = x, one = 1;
 for (int i = 0; i < N; i++) dp[i + 1] = dp[i] * a, a -= one;
 for (int i = N; i > 0; i--) pd[i - 1] = pd[i] * a, a += one;
 for (int i = 0; i <= N; i++) {
 mint tmp = y[i] * dp[i] * pd[i] * C.finv(i) * C.finv(N - i);
 ret += ((N - i) & 1) ? -tmp : tmp;
 }
 return ret;
}






template <typename mint>
struct FormalPowerSeries : vector<mint> {
 using vector<mint>::vector;
 using FPS = FormalPowerSeries;

 FPS &operator+=(const FPS &r) {
 if (r.size() > this->size()) this->resize(r.size());
 for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
 return *this;
 }

 FPS &operator+=(const mint &r) {
 if (this->empty()) this->resize(1);
 (*this)[0] += r;
 return *this;
 }

 FPS &operator-=(const FPS &r) {
 if (r.size() > this->size()) this->resize(r.size());
 for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
 return *this;
 }

 FPS &operator-=(const mint &r) {
 if (this->empty()) this->resize(1);
 (*this)[0] -= r;
 return *this;
 }

 FPS &operator*=(const mint &v) {
 for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
 return *this;
 }

 FPS &operator/=(const FPS &r) {
 if (this->size() < r.size()) {
 this->clear();
 return *this;
 }
 int n = this->size() - r.size() + 1;
 if ((int)r.size() <= 64) {
 FPS f(*this), g(r);
 g.shrink();
 mint coeff = g.back().inverse();
 for (auto &x : g) x *= coeff;
 int deg = (int)f.size() - (int)g.size() + 1;
 int gs = g.size();
 FPS quo(deg);
 for (int i = deg - 1; i >= 0; i--) {
 quo[i] = f[i + gs - 1];
 for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
 }
 *this = quo * coeff;
 this->resize(n, mint(0));
 return *this;
 }
 return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
 }

 FPS &operator%=(const FPS &r) {
 *this -= *this / r * r;
 shrink();
 return *this;
 }

 FPS operator+(const FPS &r) const { return FPS(*this) += r; }
 FPS operator+(const mint &v) const { return FPS(*this) += v; }
 FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
 FPS operator-(const mint &v) const { return FPS(*this) -= v; }
 FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
 FPS operator*(const mint &v) const { return FPS(*this) *= v; }
 FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
 FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
 FPS operator-() const {
 FPS ret(this->size());
 for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
 return ret;
 }

 void shrink() {
 while (this->size() && this->back() == mint(0)) this->pop_back();
 }

 FPS rev() const {
 FPS ret(*this);
 reverse(begin(ret), end(ret));
 return ret;
 }

 FPS dot(FPS r) const {
 FPS ret(min(this->size(), r.size()));
 for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
 return ret;
 }

 
 FPS pre(int sz) const {
 FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz));
 if ((int)ret.size() < sz) ret.resize(sz);
 return ret;
 }

 FPS operator>>(int sz) const {
 if ((int)this->size() <= sz) return {};
 FPS ret(*this);
 ret.erase(ret.begin(), ret.begin() + sz);
 return ret;
 }

 FPS operator<<(int sz) const {
 FPS ret(*this);
 ret.insert(ret.begin(), sz, mint(0));
 return ret;
 }

 FPS diff() const {
 const int n = (int)this->size();
 FPS ret(max(0, n - 1));
 mint one(1), coeff(1);
 for (int i = 1; i < n; i++) {
 ret[i - 1] = (*this)[i] * coeff;
 coeff += one;
 }
 return ret;
 }

 FPS integral() const {
 const int n = (int)this->size();
 FPS ret(n + 1);
 ret[0] = mint(0);
 if (n > 0) ret[1] = mint(1);
 auto mod = mint::get_mod();
 for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
 for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
 return ret;
 }

 mint eval(mint x) const {
 mint r = 0, w = 1;
 for (auto &v : *this) r += w * v, w *= x;
 return r;
 }

 FPS log(int deg = -1) const {
 assert(!(*this).empty() && (*this)[0] == mint(1));
 if (deg == -1) deg = (int)this->size();
 return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
 }

 FPS pow(int64_t k, int deg = -1) const {
 const int n = (int)this->size();
 if (deg == -1) deg = n;
 if (k == 0) {
 FPS ret(deg);
 if (deg) ret[0] = 1;
 return ret;
 }
 for (int i = 0; i < n; i++) {
 if ((*this)[i] != mint(0)) {
 mint rev = mint(1) / (*this)[i];
 FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
 ret *= (*this)[i].pow(k);
 ret = (ret << (i * k)).pre(deg);
 if ((int)ret.size() < deg) ret.resize(deg, mint(0));
 return ret;
 }
 if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
 }
 return FPS(deg, mint(0));
 }

 static void *ntt_ptr;
 static void set_fft();
 FPS &operator*=(const FPS &r);
 void ntt();
 void intt();
 void ntt_doubling();
 static int ntt_pr();
 FPS inv(int deg = -1) const;
 FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;







template <typename mint>
void FormalPowerSeries<mint>::set_fft() {
 if (!ntt_ptr) ntt_ptr = new NTT<mint>;
}

template <typename mint>
FormalPowerSeries<mint>& FormalPowerSeries<mint>::operator*=(
 const FormalPowerSeries<mint>& r) {
 if (this->empty() || r.empty()) {
 this->clear();
 return *this;
 }
 set_fft();
 auto ret = static_cast<NTT<mint>*>(ntt_ptr)->multiply(*this, r);
 return *this = FormalPowerSeries<mint>(ret.begin(), ret.end());
}

template <typename mint>
void FormalPowerSeries<mint>::ntt() {
 set_fft();
 static_cast<NTT<mint>*>(ntt_ptr)->ntt(*this);
}

template <typename mint>
void FormalPowerSeries<mint>::intt() {
 set_fft();
 static_cast<NTT<mint>*>(ntt_ptr)->intt(*this);
}

template <typename mint>
void FormalPowerSeries<mint>::ntt_doubling() {
 set_fft();
 static_cast<NTT<mint>*>(ntt_ptr)->ntt_doubling(*this);
}

template <typename mint>
int FormalPowerSeries<mint>::ntt_pr() {
 set_fft();
 return static_cast<NTT<mint>*>(ntt_ptr)->pr;
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::inv(int deg) const {
 assert((*this)[0] != mint(0));
 if (deg == -1) deg = (int)this->size();
 FormalPowerSeries<mint> res(deg);
 res[0] = {mint(1) / (*this)[0]};
 for (int d = 1; d < deg; d <<= 1) {
 FormalPowerSeries<mint> f(2 * d), g(2 * d);
 for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j];
 for (int j = 0; j < d; j++) g[j] = res[j];
 f.ntt();
 g.ntt();
 for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
 f.intt();
 for (int j = 0; j < d; j++) f[j] = 0;
 f.ntt();
 for (int j = 0; j < 2 * d; j++) f[j] *= g[j];
 f.intt();
 for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j];
 }
 return res.pre(deg);
}

template <typename mint>
FormalPowerSeries<mint> FormalPowerSeries<mint>::exp(int deg) const {
 using fps = FormalPowerSeries<mint>;
 assert((*this).size() == 0 || (*this)[0] == mint(0));
 if (deg == -1) deg = this->size();

 fps inv;
 inv.reserve(deg + 1);
 inv.push_back(mint(0));
 inv.push_back(mint(1));

 auto inplace_integral = [&](fps& F) -> void {
 const int n = (int)F.size();
 auto mod = mint::get_mod();
 while ((int)inv.size() <= n) {
 int i = inv.size();
 inv.push_back((-inv[mod % i]) * (mod / i));
 }
 F.insert(begin(F), mint(0));
 for (int i = 1; i <= n; i++) F[i] *= inv[i];
 };

 auto inplace_diff = [](fps& F) -> void {
 if (F.empty()) return;
 F.erase(begin(F));
 mint coeff = 1, one = 1;
 for (int i = 0; i < (int)F.size(); i++) {
 F[i] *= coeff;
 coeff += one;
 }
 };

 fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
 for (int m = 2; m < deg; m *= 2) {
 auto y = b;
 y.resize(2 * m);
 y.ntt();
 z1 = z2;
 fps z(m);
 for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i];
 z.intt();
 fill(begin(z), begin(z) + m / 2, mint(0));
 z.ntt();
 for (int i = 0; i < m; ++i) z[i] *= -z1[i];
 z.intt();
 c.insert(end(c), begin(z) + m / 2, end(z));
 z2 = c;
 z2.resize(2 * m);
 z2.ntt();
 fps x(begin(*this), begin(*this) + min<int>(this->size(), m));
 x.resize(m);
 inplace_diff(x);
 x.push_back(mint(0));
 x.ntt();
 for (int i = 0; i < m; ++i) x[i] *= y[i];
 x.intt();
 x -= b.diff();
 x.resize(2 * m);
 for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0);
 x.ntt();
 for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i];
 x.intt();
 x.pop_back();
 inplace_integral(x);
 for (int i = m; i < min<int>(this->size(), 2 * m); ++i) x[i] += (*this)[i];
 fill(begin(x), begin(x) + m, mint(0));
 x.ntt();
 for (int i = 0; i < 2 * m; ++i) x[i] *= y[i];
 x.intt();
 b.insert(end(b), begin(x) + m, end(x));
 }
 return fps{begin(b), begin(b) + deg};
}













using namespace Nyaan;
using mint = LazyMontgomeryModInt<998244353>;

using vm = vector<mint>;
using vvm = vector<vm>;
Binomial<mint> C;
using fps = FormalPowerSeries<mint>;
using namespace Nyaan;


namespace hos_lyric {
template <unsigned M_>
struct ModInt {
 static constexpr unsigned M = M_;
 unsigned x;
 constexpr ModInt() : x(0U) {}
 constexpr ModInt(unsigned x_) : x(x_ % M) {}
 constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
 constexpr ModInt(int x_)
 : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {
 }
 constexpr ModInt(long long x_)
 : x(((x_ %= static_cast<long long>(M)) < 0)
 ? (x_ + static_cast<long long>(M))
 : x_) {}
 ModInt &operator+=(const ModInt &a) {
 x = ((x += a.x) >= M) ? (x - M) : x;
 return *this;
 }
 ModInt &operator-=(const ModInt &a) {
 x = ((x -= a.x) >= M) ? (x + M) : x;
 return *this;
 }
 ModInt &operator*=(const ModInt &a) {
 x = (static_cast<unsigned long long>(x) * a.x) % M;
 return *this;
 }
 ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
 ModInt pow(long long e) const {
 if (e < 0) return inv().pow(-e);
 ModInt a = *this, b = 1U;
 for (; e; e >>= 1) {
 if (e & 1) b *= a;
 a *= a;
 }
 return b;
 }
 ModInt inv() const {
 unsigned a = M, b = x;
 int y = 0, z = 1;
 for (; b;) {
 const unsigned q = a / b;
 const unsigned c = a - q * b;
 a = b;
 b = c;
 const int w = y - static_cast<int>(q) * z;
 y = z;
 z = w;
 }
 assert(a == 1U);
 return ModInt(y);
 }
 ModInt operator+() const { return *this; }
 ModInt operator-() const {
 ModInt a;
 a.x = x ? (M - x) : 0U;
 return a;
 }
 ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
 ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
 ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
 ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
 template <class T>
 friend ModInt operator+(T a, const ModInt &b) {
 return (ModInt(a) += b);
 }
 template <class T>
 friend ModInt operator-(T a, const ModInt &b) {
 return (ModInt(a) -= b);
 }
 template <class T>
 friend ModInt operator*(T a, const ModInt &b) {
 return (ModInt(a) *= b);
 }
 template <class T>
 friend ModInt operator/(T a, const ModInt &b) {
 return (ModInt(a) /= b);
 }
 explicit operator bool() const { return x; }
 bool operator==(const ModInt &a) const { return (x == a.x); }
 bool operator!=(const ModInt &a) const { return (x != a.x); }
 friend std::ostream &operator<<(std::ostream &os, const ModInt &a) {
 return os << a.x;
 }
};

constexpr unsigned MO = 998244353U;
constexpr unsigned MO2 = 2U * MO;
constexpr int FFT_MAX = 23;
using Mint = ModInt<MO>;
constexpr Mint FFT_ROOTS[FFT_MAX + 1] = {
 1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U,
 922799308U, 781712469U, 476477967U, 166035806U, 258648936U, 584193783U,
 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U,
 996173970U, 363395222U, 565042129U, 733596141U, 267099868U, 15311432U};
constexpr Mint INV_FFT_ROOTS[FFT_MAX + 1] = {
 1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U,
 609441965U, 135236158U, 304459705U, 685443576U, 381598368U, 335559352U,
 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U,
 121392023U, 704923114U, 950391366U, 428961804U, 382752275U, 469870224U};
constexpr Mint FFT_RATIOS[FFT_MAX] = {
 911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U,
 238493703U, 975955924U, 603855026U, 856644456U, 131300601U, 842657263U,
 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U,
 743006876U, 741047443U, 56250497U, 867605899U};
constexpr Mint INV_FFT_RATIOS[FFT_MAX] = {
 86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U,
 155456985U, 797128860U, 90816748U, 860285882U, 927414960U, 354738543U,
 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U,
 438932459U, 359477183U, 824071951U, 103369235U};


void fft(Mint *as, int n) {
 assert(!(n & (n - 1)));
 assert(1 <= n);
 assert(n <= 1 << FFT_MAX);
 int m = n;
 if (m >>= 1) {
 for (int i = 0; i < m; ++i) {
 const unsigned x = as[i + m].x; 
 as[i + m].x = as[i].x + MO - x; 
 as[i].x += x; 
 }
 }
 if (m >>= 1) {
 Mint prod = 1U;
 for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
 for (int i = i0; i < i0 + m; ++i) {
 const unsigned x = (prod * as[i + m]).x; 
 as[i + m].x = as[i].x + MO - x; 
 as[i].x += x; 
 }
 prod *= FFT_RATIOS[__builtin_ctz(++h)];
 }
 }
 for (; m;) {
 if (m >>= 1) {
 Mint prod = 1U;
 for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
 for (int i = i0; i < i0 + m; ++i) {
 const unsigned x = (prod * as[i + m]).x; 
 as[i + m].x = as[i].x + MO - x; 
 as[i].x += x; 
 }
 prod *= FFT_RATIOS[__builtin_ctz(++h)];
 }
 }
 if (m >>= 1) {
 Mint prod = 1U;
 for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
 for (int i = i0; i < i0 + m; ++i) {
 const unsigned x = (prod * as[i + m]).x; 
 as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; 
 as[i + m].x = as[i].x + MO - x; 
 as[i].x += x; 
 }
 prod *= FFT_RATIOS[__builtin_ctz(++h)];
 }
 }
 }
 for (int i = 0; i < n; ++i) {
 as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; 
 as[i].x = (as[i].x >= MO) ? (as[i].x - MO) : as[i].x; 
 }
}


void invFft(Mint *as, int n) {
 assert(!(n & (n - 1)));
 assert(1 <= n);
 assert(n <= 1 << FFT_MAX);
 int m = 1;
 if (m < n >> 1) {
 Mint prod = 1U;
 for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
 for (int i = i0; i < i0 + m; ++i) {
 const unsigned long long y = as[i].x + MO - as[i + m].x; 
 as[i].x += as[i + m].x; 
 as[i + m].x = (prod.x * y) % MO; 
 }
 prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
 }
 m <<= 1;
 }
 for (; m < n >> 1; m <<= 1) {
 Mint prod = 1U;
 for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
 for (int i = i0; i < i0 + (m >> 1); ++i) {
 const unsigned long long y = as[i].x + MO2 - as[i + m].x; 
 as[i].x += as[i + m].x; 
 as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; 
 as[i + m].x = (prod.x * y) % MO; 
 }
 for (int i = i0 + (m >> 1); i < i0 + m; ++i) {
 const unsigned long long y = as[i].x + MO - as[i + m].x; 
 as[i].x += as[i + m].x; 
 as[i + m].x = (prod.x * y) % MO; 
 }
 prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
 }
 }
 if (m < n) {
 for (int i = 0; i < m; ++i) {
 const unsigned y = as[i].x + MO2 - as[i + m].x; 
 as[i].x += as[i + m].x; 
 as[i + m].x = y; 
 }
 }
 const Mint invN = Mint(n).inv();
 for (int i = 0; i < n; ++i) {
 as[i] *= invN;
 }
}

void fft(vector<Mint> &as) { fft(as.data(), as.size()); }
void invFft(vector<Mint> &as) { invFft(as.data(), as.size()); }

vector<Mint> convolve(vector<Mint> as, vector<Mint> bs) {
 if (as.empty() || bs.empty()) return {};
 const int len = as.size() + bs.size() - 1;
 int n = 1;
 for (; n < len; n <<= 1) {
 }
 as.resize(n);
 fft(as);
 bs.resize(n);
 fft(bs);
 for (int i = 0; i < n; ++i) as[i] *= bs[i];
 invFft(as);
 as.resize(len);
 return as;
}
vector<Mint> square(vector<Mint> as) {
 if (as.empty()) return {};
 const int len = as.size() + as.size() - 1;
 int n = 1;
 for (; n < len; n <<= 1) {
 }
 as.resize(n);
 fft(as);
 for (int i = 0; i < n; ++i) as[i] *= as[i];
 invFft(as);
 as.resize(len);
 return as;
}

constexpr int LIM_INV = 1 << 20; 
Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];
struct ModIntPreparator {
 ModIntPreparator() {
 inv[1] = 1;
 for (int i = 2; i < LIM_INV; ++i)
 inv[i] = -((Mint::M / i) * inv[Mint::M % i]);
 fac[0] = 1;
 for (int i = 1; i < LIM_INV; ++i) fac[i] = fac[i - 1] * i;
 invFac[0] = 1;
 for (int i = 1; i < LIM_INV; ++i) invFac[i] = invFac[i - 1] * inv[i];
 }
} preparator;





static constexpr int LIM_POLY = 1 << 20; 
static_assert(LIM_POLY <= 1 << FFT_MAX,
 "Poly: LIM_POLY <= 1 << FFT_MAX must hold.");
static Mint polyWork0[LIM_POLY], polyWork1[LIM_POLY], polyWork2[LIM_POLY],
 polyWork3[LIM_POLY];

struct Poly : public vector<Mint> {
 Poly() {}
 explicit Poly(int n) : vector<Mint>(n) {}
 Poly(const vector<Mint> &vec) : vector<Mint>(vec) {}
 Poly(std::initializer_list<Mint> il) : vector<Mint>(il) {}
 int size() const { return vector<Mint>::size(); }
 Mint at(long long k) const {
 return (0 <= k && k < size()) ? (*this)[k] : 0U;
 }
 int ord() const {
 for (int i = 0; i < size(); ++i)
 if ((*this)[i]) return i;
 return -1;
 }
 int deg() const {
 for (int i = size(); --i >= 0;)
 if ((*this)[i]) return i;
 return -1;
 }
 Poly mod(int n) const {
 return Poly(vector<Mint>(data(), data() + min(n, size())));
 }
 friend std::ostream &operator<<(std::ostream &os, const Poly &fs) {
 os << "[";
 for (int i = 0; i < fs.size(); ++i) {
 if (i > 0) os << ", ";
 os << fs[i];
 }
 return os << "]";
 }

 Poly &operator+=(const Poly &fs) {
 if (size() < fs.size()) resize(fs.size());
 for (int i = 0; i < fs.size(); ++i) (*this)[i] += fs[i];
 return *this;
 }
 Poly &operator-=(const Poly &fs) {
 if (size() < fs.size()) resize(fs.size());
 for (int i = 0; i < fs.size(); ++i) (*this)[i] -= fs[i];
 return *this;
 }
 
 Poly &operator*=(const Poly &fs) {
 if (empty() || fs.empty()) return *this = {};
 const int nt = size(), nf = fs.size();
 int n = 1;
 for (; n < nt + nf - 1; n <<= 1) {
 }
 assert(n <= LIM_POLY);
 resize(n);
 fft(data(), n); 
 memcpy(polyWork0, fs.data(), nf * sizeof(Mint));
 memset(polyWork0 + nf, 0, (n - nf) * sizeof(Mint));
 fft(polyWork0, n); 
 for (int i = 0; i < n; ++i) (*this)[i] *= polyWork0[i];
 invFft(data(), n); 
 resize(nt + nf - 1);
 return *this;
 }
 
 
 Poly &operator/=(const Poly &fs) {
 const int m = deg(), n = fs.deg();
 assert(n != -1);
 if (m < n) return *this = {};
 Poly tsRev(m - n + 1), fsRev(min(m - n, n) + 1);
 for (int i = 0; i <= m - n; ++i) tsRev[i] = (*this)[m - i];
 for (int i = 0, i0 = min(m - n, n); i <= i0; ++i) fsRev[i] = fs[n - i];
 const Poly qsRev = tsRev.div(fsRev, m - n + 1); 
 resize(m - n + 1);
 for (int i = 0; i <= m - n; ++i) (*this)[i] = qsRev[m - n - i];
 return *this;
 }
 
 Poly &operator%=(const Poly &fs) {
 const Poly qs = *this / fs; 
 *this -= fs * qs; 
 resize(deg() + 1);
 return *this;
 }
 Poly &operator*=(const Mint &a) {
 for (int i = 0; i < size(); ++i) (*this)[i] *= a;
 return *this;
 }
 Poly &operator/=(const Mint &a) {
 const Mint b = a.inv();
 for (int i = 0; i < size(); ++i) (*this)[i] *= b;
 return *this;
 }
 Poly operator+() const { return *this; }
 Poly operator-() const {
 Poly fs(size());
 for (int i = 0; i < size(); ++i) fs[i] = -(*this)[i];
 return fs;
 }
 Poly operator+(const Poly &fs) const { return (Poly(*this) += fs); }
 Poly operator-(const Poly &fs) const { return (Poly(*this) -= fs); }
 Poly operator*(const Poly &fs) const { return (Poly(*this) *= fs); }
 Poly operator/(const Poly &fs) const { return (Poly(*this) /= fs); }
 Poly operator%(const Poly &fs) const { return (Poly(*this) %= fs); }
 Poly operator*(const Mint &a) const { return (Poly(*this) *= a); }
 Poly operator/(const Mint &a) const { return (Poly(*this) /= a); }
 friend Poly operator*(const Mint &a, const Poly &fs) { return fs * a; }

 
 
 Poly inv(int n) const {
 assert(!empty());
 assert((*this)[0]);
 assert(1 <= n);
 assert(n == 1 || 1 << (32 - __builtin_clz(n - 1)) <= LIM_POLY);
 Poly fs(n);
 fs[0] = (*this)[0].inv();
 for (int m = 1; m < n; m <<= 1) {
 memcpy(polyWork0, data(), min(m << 1, size()) * sizeof(Mint));
 memset(polyWork0 + min(m << 1, size()), 0,
 ((m << 1) - min(m << 1, size())) * sizeof(Mint));
 fft(polyWork0, m << 1); 
 memcpy(polyWork1, fs.data(), min(m << 1, n) * sizeof(Mint));
 memset(polyWork1 + min(m << 1, n), 0,
 ((m << 1) - min(m << 1, n)) * sizeof(Mint));
 fft(polyWork1, m << 1); 
 for (int i = 0; i < m << 1; ++i) polyWork0[i] *= polyWork1[i];
 invFft(polyWork0, m << 1); 
 memset(polyWork0, 0, m * sizeof(Mint));
 fft(polyWork0, m << 1); 
 for (int i = 0; i < m << 1; ++i) polyWork0[i] *= polyWork1[i];
 invFft(polyWork0, m << 1); 
 for (int i = m, i0 = min(m << 1, n); i < i0; ++i) fs[i] = -polyWork0[i];
 }
 return fs;
 }
 
 
 
 Poly div(const Poly &fs, int n) const {
 assert(!fs.empty());
 assert(fs[0]);
 assert(1 <= n);
 if (n == 1) return {at(0) / fs[0]};
 
 const int m = 1 << (31 - __builtin_clz(n - 1));
 assert(m << 1 <= LIM_POLY);
 Poly gs = fs.inv(m); 
 gs.resize(m << 1);
 fft(gs.data(), m << 1); 
 memcpy(polyWork0, data(), min(m, size()) * sizeof(Mint));
 memset(polyWork0 + min(m, size()), 0,
 ((m << 1) - min(m, size())) * sizeof(Mint));
 fft(polyWork0, m << 1); 
 for (int i = 0; i < m << 1; ++i) polyWork0[i] *= gs[i];
 invFft(polyWork0, m << 1); 
 Poly hs(n);
 memcpy(hs.data(), polyWork0, m * sizeof(Mint));
 memset(polyWork0 + m, 0, m * sizeof(Mint));
 fft(polyWork0, m << 1); 
 memcpy(polyWork1, fs.data(), min(m << 1, fs.size()) * sizeof(Mint));
 memset(polyWork1 + min(m << 1, fs.size()), 0,
 ((m << 1) - min(m << 1, fs.size())) * sizeof(Mint));
 fft(polyWork1, m << 1); 
 for (int i = 0; i < m << 1; ++i) polyWork0[i] *= polyWork1[i];
 invFft(polyWork0, m << 1); 
 memset(polyWork0, 0, m * sizeof(Mint));
 for (int i = m, i0 = min(m << 1, size()); i < i0; ++i)
 polyWork0[i] -= (*this)[i];
 fft(polyWork0, m << 1); 
 for (int i = 0; i < m << 1; ++i) polyWork0[i] *= gs[i];
 invFft(polyWork0, m << 1); 
 for (int i = m; i < n; ++i) hs[i] = -polyWork0[i];
 return hs;
 }
 
 
 
 Mint divAt(const Poly &fs, long long k) const {
 assert(k >= 0);
 if (size() >= fs.size()) {
 const Poly qs = *this / fs; 
 Poly rs = *this - fs * qs; 
 rs.resize(rs.deg() + 1);
 return qs.at(k) + rs.divAt(fs, k);
 }
 int h = 0, m = 1;
 for (; m < fs.size(); ++h, m <<= 1) {
 }
 if (k < m) {
 const Poly gs = fs.inv(k + 1); 
 Mint sum;
 for (int i = 0, i0 = min<int>(k + 1, size()); i < i0; ++i)
 sum += (*this)[i] * gs[k - i];
 return sum;
 }
 assert(m << 1 <= LIM_POLY);
 polyWork0[0] = Mint(2U).inv();
 for (int hh = 0; hh < h; ++hh)
 for (int i = 0; i < 1 << hh; ++i)
 polyWork0[1 << hh | i] = polyWork0[i] * INV_FFT_ROOTS[hh + 2];
 const Mint a = FFT_ROOTS[h + 1];
 memcpy(polyWork2, data(), size() * sizeof(Mint));
 memset(polyWork2 + size(), 0, ((m << 1) - size()) * sizeof(Mint));
 fft(polyWork2, m << 1); 
 memcpy(polyWork1, fs.data(), fs.size() * sizeof(Mint));
 memset(polyWork1 + fs.size(), 0, ((m << 1) - fs.size()) * sizeof(Mint));
 fft(polyWork1, m << 1); 
 for (;;) {
 if (k & 1) {
 for (int i = 0; i < m; ++i)
 polyWork2[i] =
 polyWork0[i] * (polyWork2[i << 1 | 0] * polyWork1[i << 1 | 1] -
 polyWork2[i << 1 | 1] * polyWork1[i << 1 | 0]);
 } else {
 for (int i = 0; i < m; ++i) {
 polyWork2[i] = polyWork2[i << 1 | 0] * polyWork1[i << 1 | 1] +
 polyWork2[i << 1 | 1] * polyWork1[i << 1 | 0];
 polyWork2[i].x =
 ((polyWork2[i].x & 1) ? (polyWork2[i].x + MO) : polyWork2[i].x) >>
 1;
 }
 }
 for (int i = 0; i < m; ++i)
 polyWork1[i] = polyWork1[i << 1 | 0] * polyWork1[i << 1 | 1];
 if ((k >>= 1) < m) {
 invFft(polyWork2, m); 
 invFft(polyWork1, m); 
 
 const Poly gs = Poly(vector<Mint>(polyWork1, polyWork1 + k + 1))
 .inv(k + 1); 
 Mint sum;
 for (int i = 0; i <= k; ++i) sum += polyWork2[i] * gs[k - i];
 return sum;
 }
 memcpy(polyWork2 + m, polyWork2, m * sizeof(Mint));
 invFft(polyWork2 + m, m); 
 memcpy(polyWork1 + m, polyWork1, m * sizeof(Mint));
 invFft(polyWork1 + m, m); 
 Mint aa = 1;
 for (int i = m; i < m << 1; ++i) {
 polyWork2[i] *= aa;
 polyWork1[i] *= aa;
 aa *= a;
 }
 fft(polyWork2 + m, m); 
 fft(polyWork1 + m, m); 
 }
 }
};

Mint linearRecurrenceAt(const vector<Mint> &as, const vector<Mint> &cs,
 long long k) {
 assert(!cs.empty());
 assert(cs[0]);
 const int d = cs.size() - 1;
 assert(as.size() >= static_cast<size_t>(d));
 return (Poly(vector<Mint>(as.begin(), as.begin() + d)) * cs)
 .mod(d)
 .divAt(cs, k);
}

struct SubproductTree {
 int logN, n, nn;
 vector<Mint> xs;
 
 
 
 
 vector<Mint> buf;
 vector<Mint *> gss;
 
 Poly all;
 
 SubproductTree(const vector<Mint> &xs_) {
 n = xs_.size();
 for (logN = 0, nn = 1; nn < n; ++logN, nn <<= 1) {
 }
 xs.assign(nn, 0U);
 memcpy(xs.data(), xs_.data(), n * sizeof(Mint));
 buf.assign((logN + 1) * (nn << 1), 0U);
 gss.assign(nn << 1, nullptr);
 for (int h = 0; h <= logN; ++h)
 for (int u = 1 << h; u < 1 << (h + 1); ++u) {
 gss[u] =
 buf.data() + (h * (nn << 1) + ((u - (1 << h)) << (logN - h + 1)));
 }
 for (int i = 0; i < nn; ++i) {
 gss[nn + i][0] = -xs[i] + 1;
 gss[nn + i][1] = -xs[i] - 1;
 }
 if (nn == 1) gss[1][1] += 2;
 for (int h = logN; --h >= 0;) {
 const int m = 1 << (logN - h);
 for (int u = 1 << (h + 1); --u >= 1 << h;) {
 for (int i = 0; i < m; ++i)
 gss[u][i] = gss[u << 1][i] * gss[u << 1 | 1][i];
 memcpy(gss[u] + m, gss[u], m * sizeof(Mint));
 invFft(gss[u] + m, m); 
 if (h > 0) {
 gss[u][m] -= 2;
 const Mint a = FFT_ROOTS[logN - h + 1];
 Mint aa = 1;
 for (int i = m; i < m << 1; ++i) {
 gss[u][i] *= aa;
 aa *= a;
 };
 fft(gss[u] + m, m); 
 }
 }
 }
 all.resize(nn + 1);
 all[0] = 1;
 for (int i = 1; i < nn; ++i) all[i] = gss[1][nn + nn - i];
 all[nn] = gss[1][nn] - 1;
 }
 
 
 vector<Mint> multiEval(const Poly &fs) const {
 vector<Mint> work0(nn), work1(nn), work2(nn);
 {
 const int m = max(fs.size(), 1);
 auto invAll = all.inv(m); 
 std::reverse(invAll.begin(), invAll.end());
 int mm;
 for (mm = 1; mm < m - 1 + nn; mm <<= 1) {
 }
 invAll.resize(mm, 0U);
 fft(invAll); 
 vector<Mint> ffs(mm, 0U);
 memcpy(ffs.data(), fs.data(), fs.size() * sizeof(Mint));
 fft(ffs); 
 for (int i = 0; i < mm; ++i) ffs[i] *= invAll[i];
 invFft(ffs); 
 memcpy(((logN & 1) ? work1 : work0).data(), ffs.data() + m - 1,
 nn * sizeof(Mint));
 }
 for (int h = 0; h < logN; ++h) {
 const int m = 1 << (logN - h);
 for (int u = 1 << h; u < 1 << (h + 1); ++u) {
 Mint *hs = (((logN - h) & 1) ? work1 : work0).data() +
 ((u - (1 << h)) << (logN - h));
 Mint *hs0 = (((logN - h) & 1) ? work0 : work1).data() +
 ((u - (1 << h)) << (logN - h));
 Mint *hs1 = hs0 + (m >> 1);
 fft(hs, m); 
 for (int i = 0; i < m; ++i) work2[i] = gss[u << 1 | 1][i] * hs[i];
 invFft(work2.data(), m); 
 memcpy(hs0, work2.data() + (m >> 1), (m >> 1) * sizeof(Mint));
 for (int i = 0; i < m; ++i) work2[i] = gss[u << 1][i] * hs[i];
 invFft(work2.data(), m); 
 memcpy(hs1, work2.data() + (m >> 1), (m >> 1) * sizeof(Mint));
 }
 }
 work0.resize(n);
 return work0;
 }
 
 Poly interpolate(const vector<Mint> &ys) const {
 assert(static_cast<int>(ys.size()) == n);
 Poly gs(n);
 for (int i = 0; i < n; ++i) gs[i] = (i + 1) * all[n - (i + 1)];
 const vector<Mint> denoms =
 multiEval(gs); 
 vector<Mint> work(nn << 1, 0U);
 for (int i = 0; i < n; ++i) {
 
 assert(denoms[i]);
 work[i << 1] = work[i << 1 | 1] = ys[i] / denoms[i];
 }
 for (int h = logN; --h >= 0;) {
 const int m = 1 << (logN - h);
 for (int u = 1 << (h + 1); --u >= 1 << h;) {
 Mint *hs = work.data() + ((u - (1 << h)) << (logN - h + 1));
 for (int i = 0; i < m; ++i)
 hs[i] = gss[u << 1 | 1][i] * hs[i] + gss[u << 1][i] * hs[m + i];
 if (h > 0) {
 memcpy(hs + m, hs, m * sizeof(Mint));
 invFft(hs + m, m); 
 const Mint a = FFT_ROOTS[logN - h + 1];
 Mint aa = 1;
 for (int i = m; i < m << 1; ++i) {
 hs[i] *= aa;
 aa *= a;
 };
 fft(hs + m, m); 
 }
 }
 }
 invFft(work.data(), nn); 
 return Poly(vector<Mint>(work.data() + nn - n, work.data() + nn));
 }
};
} 

vm select(int r, int a, vm ys) {
 int N = ys.size();
 vector<hos_lyric::Mint> xs(N), ys2(N);
 rep(i, N) ys2[i] = ys[i].get();
 rep(i, N) xs[i] = i;
 auto t1 = hos_lyric::SubproductTree(xs);
 auto f = t1.interpolate(ys2);
 rep(i, N) xs[i] = i * a + r;
 auto t2 = hos_lyric::SubproductTree(xs);
 ys2 = t2.multiEval(f);
 rep(i, N) ys[i] = ys2[i].x;
 return ys;
}
vm shift(vm ys) {
 int N = ys.size();
 ys.push_back(lagrange_interpolation(ys, N, C));
 auto res = mkrui(ys);
 res.erase(begin(res));
 return res;
}

void q() {
 inl(N);
 vl A(N - 1);
 in(A);
 bigint M;
 in(M);
 vm ys{1};
 each(a, A) {
 auto [q, r] = divmod(M, a);
 ys = select(r.to_ll(), a, ys);
 ys = shift(ys);
 M = q;
 }
 out(lagrange_interpolation(ys, (M % 998244353).to_ll(), C));
}

void Nyaan::solve() {
 int t = 1;
 
 while (t--) q();
}
0