結果
| 問題 |
No.2580 Hyperinflation
|
| コンテスト | |
| ユーザー |
tute7627
|
| 提出日時 | 2023-12-08 22:03:13 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,208 ms / 4,000 ms |
| コード長 | 18,422 bytes |
| コンパイル時間 | 5,318 ms |
| コンパイル使用メモリ | 261,876 KB |
| 最終ジャッジ日時 | 2025-02-18 09:38:09 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 31 |
ソースコード
// https://atcoder.jp/contests/arc118/submissions/24453032
#include <bits/stdc++.h>
#include <atcoder/convolution>
using Fp = atcoder::modint998244353;
std::ostream& operator<<(std::ostream& os, Fp a) { return os << a.val(); }
using Fps = std::vector<Fp>;
int sz(const Fps& a) { return a.size(); }
Fps operator-(Fps a) {
for (auto&& e : a) e = -e;
return a;
}
Fps& operator+=(Fps& a, const Fps& b) {
if (sz(a) < sz(b)) a.reserve(sz(b)), a.resize(sz(b));
for (int i = 0; i < sz(b); ++i) a[i] += b[i];
return a;
}
Fps operator+(Fps a, const Fps& b) { return std::move(a += b); }
Fps& operator-=(Fps& a, const Fps& b) {
if (sz(a) < sz(b)) a.reserve(sz(b)), a.resize(sz(b));
for (int i = 0; i < sz(b); ++i) a[i] -= b[i];
return a;
}
Fps operator-(Fps a, const Fps& b) { return std::move(a -= b); }
Fps& operator*=(Fps& a, Fp b) {
for (auto&& e : a) e *= b;
return a;
}
Fps operator*(Fps a, Fp b) { return std::move(a *= b); }
Fps operator*(Fp a, Fps b) { return std::move(b *= a); }
Fps& operator/=(Fps& a, Fp b) {
b = b.inv();
for (auto&& e : a) e *= b;
return a;
}
Fps operator/(Fps a, Fp b) { return std::move(a /= b); }
Fps fft(const Fps& a, int n) {
Fps res(n);
std::copy(a.begin(), a.begin() + std::min(n, sz(a)), res.begin());
atcoder::internal::butterfly(res);
return res;
}
Fps circ(Fps&& a, const Fps& b) {
if (sz(a) < sz(b)) a.reserve(sz(b)), a.resize(sz(b));
for (int i = 0; i < sz(b); ++i) a[i] *= b[i];
return a;
}
Fps circ(Fps&& a) {
for (auto&& e : a) e *= e;
return a;
}
Fps ifft(Fps&& a, int size) {
int n = sz(a);
atcoder::internal::butterfly_inv(a);
a.resize(size);
a *= (1 - Fp::mod()) / n;
return a;
}
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
Fps operator*(const Fps& a, const Fps& b) {
if (a.empty() || b.empty()) return {};
if (std::min(sz(a), sz(b)) <= 1) {
Fps res(std::max(sz(a), sz(b)));
for (int i = 0; i < sz(a); ++i)
for (int j = 0; j < sz(b); ++j) {
if (i + j == sz(res)) break;
res[i + j] += a[i] * b[j];
}
return res;
}
int n = 1 << ceil_pow2(sz(a) + sz(b) - 1);
auto buf = fft(a, n);
if (&a == &b)
buf = circ(std::move(buf));
else
buf = circ(std::move(buf), fft(b, n));
return ifft(std::move(buf), std::max(sz(a), sz(b)));
}
Fps& operator*=(Fps& a, const Fps& b) { return a = a * b; }
Fps inv(const Fps& a) {
Fps res{a[0].inv()};
for (int n = 1; n < sz(a); n *= 2) {
auto f_res = fft(res, 2 * n);
Fps buf = ifft(circ(fft(a, 2 * n), f_res), 2 * n);
std::fill(buf.begin(), buf.begin() + n, 0);
buf = ifft(circ(fft(buf, 2 * n), f_res), std::min(2 * n, sz(a)));
for (int i = n; i < sz(buf); ++i) res.push_back(-buf[i]);
}
return res;
}
using Poly = std::vector<Fp>;
Fp eval(const Poly& a, Fp x) {
Fp res;
for (int i = sz(a); i--;) (res *= x) += a[i];
return res;
}
std::vector<Fp> fact, ifact;
void reserve(int n) {
fact.resize(n + 1), ifact.resize(n + 1);
fact[0] = 1;
for (int i = 1; i <= n; ++i) fact[i] = i * fact[i - 1];
ifact[n] = fact[n].pow(Fp::mod() - 2);
for (int i = n; i; --i) ifact[i - 1] = ifact[i] * i;
}
using namespace std;
using cpx = complex<double>;
const double PI = acos(-1);
vector<cpx> roots = {{0, 0},
{1, 0}};
void ensure_capacity(int min_capacity) {
for (int len = roots.size(); len < min_capacity; len *= 2) {
for (int i = len >> 1; i < len; i++) {
roots.emplace_back(roots[i]);
double angle = 2 * PI * (2 * i + 1 - len) / (len * 2);
roots.emplace_back(cos(angle), sin(angle));
}
}
}
void fft(vector<cpx> &z, bool inverse) {
int n = z.size();
assert((n & (n - 1)) == 0);
ensure_capacity(n);
for (unsigned i = 1, j = 0; i < n; i++) {
int bit = n >> 1;
for (; j >= bit; bit >>= 1)
j -= bit;
j += bit;
if (i < j)
swap(z[i], z[j]);
}
for (int len = 1; len < n; len <<= 1) {
for (int i = 0; i < n; i += len * 2) {
for (int j = 0; j < len; j++) {
cpx root = inverse ? conj(roots[j + len]) : roots[j + len];
cpx u = z[i + j];
cpx v = z[i + j + len] * root;
z[i + j] = u + v;
z[i + j + len] = u - v;
}
}
}
if (inverse)
for (int i = 0; i < n; i++)
z[i] /= n;
}
vector<int> multiply_bigint(const vector<int> &a, const vector<int> &b, int base) {
int need = a.size() + b.size();
int n = 1;
while (n < need) n <<= 1;
vector<cpx> p(n);
for (size_t i = 0; i < n; i++) {
p[i] = cpx(i < a.size() ? a[i] : 0, i < b.size() ? b[i] : 0);
}
fft(p, false);
// a[w[k]] = (p[w[k]] + conj(p[w[n-k]])) / 2
// b[w[k]] = (p[w[k]] - conj(p[w[n-k]])) / (2*i)
vector<cpx> ab(n);
cpx r(0, -0.25);
for (int i = 0; i < n; i++) {
int j = (n - i) & (n - 1);
ab[i] = (p[i] * p[i] - conj(p[j] * p[j])) * r;
}
fft(ab, true);
vector<int> result(need);
long long carry = 0;
for (int i = 0; i < need; i++) {
long long d = (long long) (ab[i].real() + 0.5) + carry;
carry = d / base;
result[i] = d % base;
}
return result;
}
vector<int> multiply_mod(const vector<int> &a, const vector<int> &b, int m) {
int need = a.size() + b.size() - 1;
int n = 1;
while (n < need) n <<= 1;
vector<cpx> A(n);
for (size_t i = 0; i < a.size(); i++) {
int x = (a[i] % m + m) % m;
A[i] = cpx(x & ((1 << 15) - 1), x >> 15);
}
fft(A, false);
vector<cpx> B(n);
for (size_t i = 0; i < b.size(); i++) {
int x = (b[i] % m + m) % m;
B[i] = cpx(x & ((1 << 15) - 1), x >> 15);
}
fft(B, false);
vector<cpx> fa(n);
vector<cpx> fb(n);
for (int i = 0, j = 0; i < n; i++, j = n - i) {
cpx a1 = (A[i] + conj(A[j])) * cpx(0.5, 0);
cpx a2 = (A[i] - conj(A[j])) * cpx(0, -0.5);
cpx b1 = (B[i] + conj(B[j])) * cpx(0.5, 0);
cpx b2 = (B[i] - conj(B[j])) * cpx(0, -0.5);
fa[i] = a1 * b1 + a2 * b2 * cpx(0, 1);
fb[i] = a1 * b2 + a2 * b1;
}
fft(fa, true);
fft(fb, true);
vector<int> res(need);
for (int i = 0; i < need; i++) {
long long aa = (long long) (fa[i].real() + 0.5);
long long bb = (long long) (fb[i].real() + 0.5);
long long cc = (long long) (fa[i].imag() + 0.5);
res[i] = (aa % m + (bb % m << 15) + (cc % m << 30)) % m;
}
return res;
}
constexpr int digits(int base) noexcept {
return base <= 1 ? 0 : 1 + digits(base / 10);
}
constexpr int base = 1000'000'000;
constexpr int base_digits = digits(base);
constexpr int fft_base = 10'000; // fft_base^2 * n / fft_base_digits <= 10^15 for double
constexpr int fft_base_digits = digits(fft_base);
struct bigint {
// value == 0 is represented by empty z
vector<int> z; // digits
// sign == 1 <==> value >= 0
// sign == -1 <==> value < 0
int sign;
bigint(long long v = 0) {
*this = v;
}
bigint &operator=(long long v) {
sign = v < 0 ? -1 : 1;
v *= sign;
z.clear();
for (; v > 0; v = v / base)
z.push_back((int) (v % base));
return *this;
}
bigint(const string &s) {
read(s);
}
bigint &operator+=(const bigint &other) {
if (sign == other.sign) {
for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
if (i == z.size())
z.push_back(0);
z[i] += carry + (i < other.z.size() ? other.z[i] : 0);
carry = z[i] >= base;
if (carry)
z[i] -= base;
}
} else if (other != 0 /* prevent infinite loop */) {
*this -= -other;
}
return *this;
}
friend bigint operator+(bigint a, const bigint &b) {
a += b;
return a;
}
bigint &operator-=(const bigint &other) {
if (sign == other.sign) {
if ((sign == 1 && *this >= other) || (sign == -1 && *this <= other)) {
for (int i = 0, carry = 0; i < other.z.size() || carry; ++i) {
z[i] -= carry + (i < other.z.size() ? other.z[i] : 0);
carry = z[i] < 0;
if (carry)
z[i] += base;
}
trim();
} else {
*this = other - *this;
this->sign = -this->sign;
}
} else {
*this += -other;
}
return *this;
}
friend bigint operator-(bigint a, const bigint &b) {
a -= b;
return a;
}
bigint &operator*=(int v) {
if (v < 0)
sign = -sign, v = -v;
for (int i = 0, carry = 0; i < z.size() || carry; ++i) {
if (i == z.size())
z.push_back(0);
long long cur = (long long) z[i] * v + carry;
carry = (int) (cur / base);
z[i] = (int) (cur % base);
}
trim();
return *this;
}
bigint operator*(int v) const {
return bigint(*this) *= v;
}
friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) {
int norm = base / (b1.z.back() + 1);
bigint a = a1.abs() * norm;
bigint b = b1.abs() * norm;
bigint q, r;
q.z.resize(a.z.size());
for (int i = (int) a.z.size() - 1; i >= 0; i--) {
r *= base;
r += a.z[i];
int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
int d = (int) (((long long) s1 * base + s2) / b.z.back());
r -= b * d;
while (r < 0)
r += b, --d;
q.z[i] = d;
}
q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
return {q, r / norm};
}
friend bigint sqrt(const bigint &a1) {
bigint a = a1;
while (a.z.empty() || a.z.size() % 2 == 1)
a.z.push_back(0);
int n = a.z.size();
int firstDigit = (int) ::sqrt((double) a.z[n - 1] * base + a.z[n - 2]);
int norm = base / (firstDigit + 1);
a *= norm;
a *= norm;
while (a.z.empty() || a.z.size() % 2 == 1)
a.z.push_back(0);
bigint r = (long long) a.z[n - 1] * base + a.z[n - 2];
firstDigit = (int) ::sqrt((double) a.z[n - 1] * base + a.z[n - 2]);
int q = firstDigit;
bigint res;
for (int j = n / 2 - 1; j >= 0; j--) {
for (;; --q) {
bigint r1 = (r - (res * 2 * base + q) * q) * base * base +
(j > 0 ? (long long) a.z[2 * j - 1] * base + a.z[2 * j - 2] : 0);
if (r1 >= 0) {
r = r1;
break;
}
}
res *= base;
res += q;
if (j > 0) {
int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()] : 0;
q = (int) (((long long) d1 * base * base + (long long) d2 * base + d3) / (firstDigit * 2));
}
}
res.trim();
return res / norm;
}
bigint operator/(const bigint &v) const {
return divmod(*this, v).first;
}
bigint operator%(const bigint &v) const {
return divmod(*this, v).second;
}
bigint &operator/=(int v) {
if (v < 0)
sign = -sign, v = -v;
for (int i = (int) z.size() - 1, rem = 0; i >= 0; --i) {
long long cur = z[i] + rem * (long long) base;
z[i] = (int) (cur / v);
rem = (int) (cur % v);
}
trim();
return *this;
}
bigint operator/(int v) const {
return bigint(*this) /= v;
}
int operator%(int v) const {
if (v < 0)
v = -v;
int m = 0;
for (int i = (int) z.size() - 1; i >= 0; --i)
m = (int) ((z[i] + m * (long long) base) % v);
return m * sign;
}
bigint &operator*=(const bigint &v) {
*this = *this * v;
return *this;
}
bigint &operator/=(const bigint &v) {
*this = *this / v;
return *this;
}
bigint &operator%=(const bigint &v) {
*this = *this % v;
return *this;
}
bool operator<(const bigint &v) const {
if (sign != v.sign)
return sign < v.sign;
if (z.size() != v.z.size())
return z.size() * sign < v.z.size() * v.sign;
for (int i = (int) z.size() - 1; i >= 0; i--)
if (z[i] != v.z[i])
return z[i] * sign < v.z[i] * sign;
return false;
}
bool operator>(const bigint &v) const {
return v < *this;
}
bool operator<=(const bigint &v) const {
return !(v < *this);
}
bool operator>=(const bigint &v) const {
return !(*this < v);
}
bool operator==(const bigint &v) const {
return !(*this < v) && !(v < *this);
}
bool operator!=(const bigint &v) const {
return *this < v || v < *this;
}
void trim() {
while (!z.empty() && z.back() == 0)
z.pop_back();
if (z.empty())
sign = 1;
}
bool isZero() const {
return z.empty();
}
friend bigint operator-(bigint v) {
if (!v.z.empty())
v.sign = -v.sign;
return v;
}
bigint abs() const {
return sign == 1 ? *this : -*this;
}
long long longValue() const {
long long res = 0;
for (int i = (int) z.size() - 1; i >= 0; i--)
res = res * base + z[i];
return res * sign;
}
friend bigint gcd(const bigint &a, const bigint &b) {
return b.isZero() ? a : gcd(b, a % b);
}
friend bigint lcm(const bigint &a, const bigint &b) {
return a / gcd(a, b) * b;
}
void read(const string &s) {
sign = 1;
z.clear();
int pos = 0;
while (pos < s.size() && (s[pos] == '-' || s[pos] == '+')) {
if (s[pos] == '-')
sign = -sign;
++pos;
}
for (int i = (int) s.size() - 1; i >= pos; i -= base_digits) {
int x = 0;
for (int j = max(pos, i - base_digits + 1); j <= i; j++)
x = x * 10 + s[j] - '0';
z.push_back(x);
}
trim();
}
friend istream &operator>>(istream &stream, bigint &v) {
string s;
stream >> s;
v.read(s);
return stream;
}
friend ostream &operator<<(ostream &stream, const bigint &v) {
if (v.sign == -1)
stream << '-';
stream << (v.z.empty() ? 0 : v.z.back());
for (int i = (int) v.z.size() - 2; i >= 0; --i)
stream << setw(base_digits) << setfill('0') << v.z[i];
return stream;
}
static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
vector<long long> p(max(old_digits, new_digits) + 1);
p[0] = 1;
for (int i = 1; i < p.size(); i++)
p[i] = p[i - 1] * 10;
vector<int> res;
long long cur = 0;
int cur_digits = 0;
for (int v : a) {
cur += v * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits) {
res.push_back(int(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((int) cur);
while (!res.empty() && res.back() == 0)
res.pop_back();
return res;
}
bigint operator*(const bigint &v) const {
if (min(z.size(), v.z.size()) < 150)
return mul_simple(v);
bigint res;
res.sign = sign * v.sign;
res.z = multiply_bigint(convert_base(z, base_digits, fft_base_digits),
convert_base(v.z, base_digits, fft_base_digits), fft_base);
res.z = convert_base(res.z, fft_base_digits, base_digits);
res.trim();
return res;
}
bigint mul_simple(const bigint &v) const {
bigint res;
res.sign = sign * v.sign;
res.z.resize(z.size() + v.z.size());
for (int i = 0; i < z.size(); ++i)
if (z[i])
for (int j = 0, carry = 0; j < v.z.size() || carry; ++j) {
long long cur = res.z[i + j] + (long long) z[i] * (j < v.z.size() ? v.z[j] : 0) + carry;
carry = (int) (cur / base);
res.z[i + j] = (int) (cur % base);
}
res.trim();
return res;
}
};
mt19937 rng(1);
bigint random_bigint(int n) {
string s;
for (int i = 0; i < n; i++) {
s += uniform_int_distribution<int>('0', '9')(rng);
}
return bigint(s);
}
int main() {
using namespace std;
cin.tie(nullptr)->sync_with_stdio(false);
int n;
bigint m;
cin >> n;n--;
vector<int> a(n);
bigint mult = 1;
for (auto&& e : a){
cin >> e;
mult *= bigint(e);
}
reverse(a.begin(),a.end());
cin >> m;
m += mult;
reserve(n + 1);
auto calc=[&](bigint m){
Fps bernoulli(n + 1);
for (int i = 0; i <= n; ++i) bernoulli[i] = ifact[i + 1];
bernoulli = inv(bernoulli);
auto faulhaber = [&](Poly f) -> Poly {
for (int i = 0; i < sz(f); ++i) f[i] *= fact[i];
reverse(begin(f), end(f));
f *= Fps(begin(bernoulli), begin(bernoulli) + sz(f));
f.push_back(0);
reverse(begin(f), end(f));
for (int i = 0; i < sz(f); ++i) f[i] *= ifact[i];
return f;
};
Poly f{1};
for (int i = n; i--;) {
Poly g = faulhaber(f);
f = -g;
Fp coeff = 1;
for (int j = 1; j < sz(f); ++j) f[j] *= coeff *= a[i];
f[0] = eval(g, ((m + 1)%bigint(998244353)).longValue());
m /= bigint(a[i]);
}
f = faulhaber(f);
return eval(f, ((m + 1)%bigint(998244353)).longValue()) - eval(f, 1);
};
cout << calc(m) - calc(m-1) << '\n';
}
tute7627