結果
問題 | No.2556 Increasing Matrix |
ユーザー | maksim |
提出日時 | 2023-12-08 22:10:40 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 9,749 bytes |
コンパイル時間 | 3,692 ms |
コンパイル使用メモリ | 191,224 KB |
実行使用メモリ | 32,748 KB |
最終ジャッジ日時 | 2024-09-27 03:12:55 |
合計ジャッジ時間 | 26,089 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 3 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 3 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 3 ms
5,376 KB |
testcase_09 | AC | 12 ms
5,376 KB |
testcase_10 | AC | 5 ms
5,376 KB |
testcase_11 | AC | 8 ms
5,376 KB |
testcase_12 | AC | 5 ms
5,376 KB |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | AC | 101 ms
5,376 KB |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
ソースコード
#include <bits/stdc++.h> using namespace std; #define int long long const int p=998244353; int po(int a,int b) {if(b==0) return 1; if(b==1) return a; if(b%2==0) {int u=po(a,b/2);return (u*u)%p;} else {int u=po(a,b-1);return (a*u)%p;}} int inv1(int x) {return po(x,p-2);} #include <bits/stdc++.h> using namespace std; const int md = 998244353; namespace faq{ inline void add(int &x, int y) { x += y; if (x >= md) { x -= md; } } inline void sub(int &x, int y) { x -= y; if (x < 0) { x += md; } } inline int mul(int x, int y) { return (long long) x * y % md; } inline int power(int x, int y) { int res = 1; for (; y; y >>= 1, x = mul(x, x)) { if (y & 1) { res = mul(res, x); } } return res; } inline int inv(int a) { a %= md; if (a < 0) { a += md; } int b = md, u = 0, v = 1; while (a) { int t = b / a; b -= t * a; swap(a, b); u -= t * v; swap(u, v); } if (u < 0) { u += md; } return u; } namespace ntt { int base = 1, root = -1, max_base = -1; vector<int> rev = {0, 1}, roots = {0, 1}; void init() { int temp = md - 1; max_base = 0; while (temp % 2 == 0) { temp >>= 1; ++max_base; } root = 2; while (true) { if (power(root, 1 << max_base) == 1 && power(root, 1 << max_base - 1) != 1) { break; } ++root; } } void ensure_base(int nbase) { if (max_base == -1) { init(); } if (nbase <= base) { return; } assert(nbase <= max_base); rev.resize(1 << nbase); for (int i = 0; i < 1 << nbase; ++i) { rev[i] = rev[i >> 1] >> 1 | (i & 1) << nbase - 1; } roots.resize(1 << nbase); while (base < nbase) { int z = power(root, 1 << max_base - 1 - base); for (int i = 1 << base - 1; i < 1 << base; ++i) { roots[i << 1] = roots[i]; roots[i << 1 | 1] = mul(roots[i], z); } ++base; } } void dft(vector<int> &a) { int n = a.size(), zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for (int i = 0; i < n; ++i) { if (i < rev[i] >> shift) { swap(a[i], a[rev[i] >> shift]); } } for (int i = 1; i < n; i <<= 1) { for (int j = 0; j < n; j += i << 1) { for (int k = 0; k < i; ++k) { int x = a[j + k], y = mul(a[j + k + i], roots[i + k]); a[j + k] = (x + y) % md; a[j + k + i] = (x + md - y) % md; } } } } vector<int> multiply(vector<int> a, vector<int> b) { int need = a.size() + b.size() - 1, nbase = 0; while (1 << nbase < need) { ++nbase; } ensure_base(nbase); int sz = 1 << nbase; a.resize(sz); b.resize(sz); bool equal = a == b; dft(a); if (equal) { b = a; } else { dft(b); } int inv_sz = inv(sz); for (int i = 0; i < sz; ++i) { a[i] = mul(mul(a[i], b[i]), inv_sz); } reverse(a.begin() + 1, a.end()); dft(a); a.resize(need); return a; } vector<int> inverse(vector<int> a) { int n = a.size(), m = n + 1 >> 1; if (n == 1) { return vector<int>(1, inv(a[0])); } else { vector<int> b = inverse(vector<int>(a.begin(), a.begin() + m)); int need = n << 1, nbase = 0; while (1 << nbase < need) { ++nbase; } ensure_base(nbase); int sz = 1 << nbase; a.resize(sz); b.resize(sz); dft(a); dft(b); int inv_sz = inv(sz); for (int i = 0; i < sz; ++i) { a[i] = mul(mul(md + 2 - mul(a[i], b[i]), b[i]), inv_sz); } reverse(a.begin() + 1, a.end()); dft(a); a.resize(n); return a; } } } using ntt::multiply; using ntt::inverse; vector<int>& operator += (vector<int> &a, const vector<int> &b) { if (a.size() < b.size()) { a.resize(b.size()); } for (int i = 0; i < b.size(); ++i) { add(a[i], b[i]); } return a; } vector<int> operator + (const vector<int> &a, const vector<int> &b) { vector<int> c = a; return c += b; } vector<int>& operator -= (vector<int> &a, const vector<int> &b) { if (a.size() < b.size()) { a.resize(b.size()); } for (int i = 0; i < b.size(); ++i) { sub(a[i], b[i]); } return a; } vector<int> operator - (const vector<int> &a, const vector<int> &b) { vector<int> c = a; return c -= b; } vector<int>& operator *= (vector<int> &a, const vector<int> &b) { if (min(a.size(), b.size()) < 128) { vector<int> c = a; a.assign(a.size() + b.size() - 1, 0); for (int i = 0; i < c.size(); ++i) { for (int j = 0; j < b.size(); ++j) { add(a[i + j], mul(c[i], b[j])); } } } else { a = multiply(a, b); } return a; } vector<int> operator * (const vector<int> &a, const vector<int> &b) { vector<int> c = a; return c *= b; } vector<int>& operator /= (vector<int> &a, const vector<int> &b) { int n = a.size(), m = b.size(); if (n < m) { a.clear(); } else { vector<int> c = b; reverse(a.begin(), a.end()); reverse(c.begin(), c.end()); c.resize(n - m + 1); a *= inverse(c); a.erase(a.begin() + n - m + 1, a.end()); reverse(a.begin(), a.end()); } return a; } vector<int> operator / (const vector<int> &a, const vector<int> &b) { vector<int> c = a; return c /= b; } vector<int>& operator %= (vector<int> &a, const vector<int> &b) { int n = a.size(), m = b.size(); if (n >= m) { vector<int> c = (a / b) * b; a.resize(m - 1); for (int i = 0; i < m - 1; ++i) { sub(a[i], c[i]); } } return a; } vector<int> operator % (const vector<int> &a, const vector<int> &b) { vector<int> c = a; return c %= b; } vector<int> derivative(const vector<int> &a) { int n = a.size(); vector<int> b(n - 1); for (int i = 1; i < n; ++i) { b[i - 1] = mul(a[i], i); } return b; } vector<int> primitive(const vector<int> &a) { int n = a.size(); vector<int> b(n + 1), invs(n + 1); for (int i = 1; i <= n; ++i) { invs[i] = i == 1 ? 1 : mul(md - md / i, invs[md % i]); b[i] = mul(a[i - 1], invs[i]); } return b; } vector<int> logarithm(const vector<int> &a) { vector<int> b = primitive(derivative(a) * inverse(a)); b.resize(a.size()); return b; } vector<int> exponent(const vector<int> &a) { vector<int> b(1, 1); while (b.size() < a.size()) { vector<int> c(a.begin(), a.begin() + min(a.size(), b.size() << 1)); add(c[0], 1); vector<int> old_b = b; b.resize(b.size() << 1); c -= logarithm(b); c *= old_b; for (int i = b.size() >> 1; i < b.size(); ++i) { b[i] = c[i]; } } b.resize(a.size()); return b; } vector<int> power(const vector<int> &a, int m) { int n = a.size(), p = -1; vector<int> b(n); for (int i = 0; i < n; ++i) { if (a[i]) { p = i; break; } } if (p == -1) { b[0] = !m; return b; } if ((long long) m * p >= n) { return b; } int mu = power(a[p], m), di = inv(a[p]); vector<int> c(n - m * p); for (int i = 0; i < n - m * p; ++i) { c[i] = mul(a[i + p], di); } c = logarithm(c); for (int i = 0; i < n - m * p; ++i) { c[i] = mul(c[i], m); } c = exponent(c); for (int i = 0; i < n - m * p; ++i) { b[i + m * p] = mul(c[i], mu); } return b; } vector<int> sqrt(const vector<int> &a) { vector<int> b(1, 1); while (b.size() < a.size()) { vector<int> c(a.begin(), a.begin() + min(a.size(), b.size() << 1)); vector<int> old_b = b; b.resize(b.size() << 1); c *= inverse(b); for (int i = b.size() >> 1; i < b.size(); ++i) { b[i] = mul(c[i], md + 1 >> 1); } } b.resize(a.size()); return b; } vector<int> multiply_all(int l, int r, vector<vector<int>> &all) { if (l > r) { return vector<int>(); } else if (l == r) { return all[l]; } else { int y = (l + r) >> 1; return multiply_all(l, y, all) * multiply_all(y + 1, r, all); } } vector<int> evaluate(const vector<int> &f, const vector<int> &x) { int n = x.size(); if (!n) { return vector<int>(); } vector<vector<int>> up(n * 2); for (int i = 0; i < n; ++i) { up[i + n] = vector<int>{(md - x[i]) % md, 1}; } for (int i = n - 1; i; --i) { up[i] = up[i << 1] * up[i << 1 | 1]; } vector<vector<int>> down(n * 2); down[1] = f % up[1]; for (int i = 2; i < n * 2; ++i) { down[i] = down[i >> 1] % up[i]; } vector<int> y(n); for (int i = 0; i < n; ++i) { y[i] = down[i + n][0]; } return y; } vector<int> interpolate(const vector<int> &x, const vector<int> &y) { int n = x.size(); vector<vector<int>> up(n * 2); for (int i = 0; i < n; ++i) { up[i + n] = vector<int>{(md - x[i]) % md, 1}; } for (int i = n - 1; i; --i) { up[i] = up[i << 1] * up[i << 1 | 1]; } vector<int> a = evaluate(derivative(up[1]), x); for (int i = 0; i < n; ++i) { a[i] = mul(y[i], inv(a[i])); } vector<vector<int>> down(n * 2); for (int i = 0; i < n; ++i) { down[i + n] = vector<int>(1, a[i]); } for (int i = n - 1; i; --i) { down[i] = down[i << 1] * up[i << 1 | 1] + down[i << 1 | 1] * up[i << 1]; } return down[1]; } } using namespace faq; using namespace faq::ntt; #define all(x) (x).begin(),(x).end() int slv(vector<int> a) { if(a.size()==1) return 1; vector<int> a1,a2; for(int i=0;i<a.size();++i) {if(2*i<a.size()) a1.push_back(a[i]); else a2.push_back(a[i]);} vector<vector<int> > h; for(int i=0;i<a1.size();++i) {h.push_back({(2*p-a1[i])%p,1});} vector<int> f=multiply_all(0,h.size()-1,h); vector<int> g=evaluate(f,a2); int res=slv(a1)*slv(a2);res%=p; for(int val:g) {res*=val;res%=p;} return res; } int32_t main() { ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0); int n;cin>>n;vector<int> a(n); for(int i=0;i<n;++i) {cin>>a[i];a[i]+=i;} int res=1; for(int i=1;i<=n-1;++i) {res*=po(inv1(i),n-i);res%=p;} res*=slv(a);res%=p; cout<<((res*res)%p+p)%p; return 0; }