結果
問題 | No.2580 Hyperinflation |
ユーザー | tko919 |
提出日時 | 2023-12-11 05:35:23 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3,609 ms / 4,000 ms |
コード長 | 30,379 bytes |
コンパイル時間 | 4,660 ms |
コンパイル使用メモリ | 260,044 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-12-16 11:11:31 |
合計ジャッジ時間 | 45,965 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,820 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,820 KB |
testcase_07 | AC | 2 ms
6,820 KB |
testcase_08 | AC | 2 ms
6,820 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,824 KB |
testcase_12 | AC | 2 ms
6,816 KB |
testcase_13 | AC | 19 ms
6,816 KB |
testcase_14 | AC | 72 ms
6,816 KB |
testcase_15 | AC | 47 ms
6,820 KB |
testcase_16 | AC | 14 ms
6,816 KB |
testcase_17 | AC | 3 ms
6,816 KB |
testcase_18 | AC | 750 ms
6,816 KB |
testcase_19 | AC | 749 ms
6,816 KB |
testcase_20 | AC | 752 ms
6,820 KB |
testcase_21 | AC | 751 ms
6,816 KB |
testcase_22 | AC | 755 ms
6,820 KB |
testcase_23 | AC | 3,586 ms
6,816 KB |
testcase_24 | AC | 3,609 ms
6,816 KB |
testcase_25 | AC | 3,602 ms
6,816 KB |
testcase_26 | AC | 3,594 ms
6,816 KB |
testcase_27 | AC | 3,593 ms
6,820 KB |
testcase_28 | AC | 3,523 ms
6,816 KB |
testcase_29 | AC | 3,506 ms
6,816 KB |
testcase_30 | AC | 3,512 ms
6,816 KB |
testcase_31 | AC | 3,516 ms
6,820 KB |
testcase_32 | AC | 1,939 ms
6,820 KB |
testcase_33 | AC | 1,946 ms
6,816 KB |
ソースコード
#line 1 "library/Template/template.hpp" #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for(int i=(int)(a);i<(int)(b);i++) #define ALL(v) (v).begin(),(v).end() #define UNIQUE(v) sort(ALL(v)),(v).erase(unique(ALL(v)),(v).end()) #define SZ(v) (int)v.size() #define MIN(v) *min_element(ALL(v)) #define MAX(v) *max_element(ALL(v)) #define LB(v,x) int(lower_bound(ALL(v),(x))-(v).begin()) #define UB(v,x) int(upper_bound(ALL(v),(x))-(v).begin()) using ll=long long int; using ull=unsigned long long; const int inf = 0x3fffffff; const ll INF = 0x1fffffffffffffff; template<typename T>inline bool chmax(T& a,T b){if(a<b){a=b;return 1;}return 0;} template<typename T>inline bool chmin(T& a,T b){if(a>b){a=b;return 1;}return 0;} template<typename T,typename U>T ceil(T x,U y){assert(y!=0); if(y<0)x=-x,y=-y; return (x>0?(x+y-1)/y:x/y);} template<typename T,typename U>T floor(T x,U y){assert(y!=0); if(y<0)x=-x,y=-y; return (x>0?x/y:(x-y+1)/y);} template<typename T>int popcnt(T x){return __builtin_popcountll(x);} template<typename T>int topbit(T x){return (x==0?-1:63-__builtin_clzll(x));} template<typename T>int lowbit(T x){return (x==0?-1:__builtin_ctzll(x));} #line 2 "library/Utility/fastio.hpp" #include <unistd.h> class FastIO{ static constexpr int L=1<<16; char rdbuf[L]; int rdLeft=0,rdRight=0; inline void reload(){ int len=rdRight-rdLeft; memmove(rdbuf,rdbuf+rdLeft,len); rdLeft=0,rdRight=len; rdRight+=fread(rdbuf+len,1,L-len,stdin); } inline bool skip(){ for(;;){ while(rdLeft!=rdRight and rdbuf[rdLeft]<=' ')rdLeft++; if(rdLeft==rdRight){ reload(); if(rdLeft==rdRight)return false; } else break; } return true; } template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline bool _read(T& x){ if(!skip())return false; if(rdLeft+20>=rdRight)reload(); bool neg=false; if(rdbuf[rdLeft]=='-'){ neg=true; rdLeft++; } x=0; while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){ x=x*10+(neg?-(rdbuf[rdLeft++]^48):(rdbuf[rdLeft++]^48)); } return true; } inline bool _read(__int128_t& x){ if(!skip())return false; if(rdLeft+40>=rdRight)reload(); bool neg=false; if(rdbuf[rdLeft]=='-'){ neg=true; rdLeft++; } x=0; while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){ x=x*10+(neg?-(rdbuf[rdLeft++]^48):(rdbuf[rdLeft++]^48)); } return true; } inline bool _read(__uint128_t& x){ if(!skip())return false; if(rdLeft+40>=rdRight)reload(); x=0; while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){ x=x*10+(rdbuf[rdLeft++]^48); } return true; } template<typename T,enable_if_t<is_floating_point<T>::value,int> =0>inline bool _read(T& x){ if(!skip())return false; if(rdLeft+20>=rdRight)reload(); bool neg=false; if(rdbuf[rdLeft]=='-'){ neg=true; rdLeft++; } x=0; while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){ x=x*10+(rdbuf[rdLeft++]^48); } if(rdbuf[rdLeft]!='.')return true; rdLeft++; T base=.1; while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){ x+=base*(rdbuf[rdLeft++]^48); base*=.1; } if(neg)x=-x; return true; } inline bool _read(char& x){ if(!skip())return false; if(rdLeft+1>=rdRight)reload(); x=rdbuf[rdLeft++]; return true; } inline bool _read(string& x){ if(!skip())return false; for(;;){ int pos=rdLeft; while(pos<rdRight and rdbuf[pos]>' ')pos++; x.append(rdbuf+rdLeft,pos-rdLeft); if(rdLeft==pos)break; rdLeft=pos; if(rdLeft==rdRight)reload(); else break; } return true; } template<typename T>inline bool _read(vector<T>& v){ for(auto& x:v){ if(!_read(x))return false; } return true; } char wtbuf[L],tmp[50]; int wtRight=0; inline void flush(){ fwrite(wtbuf,1,wtRight,stdout); wtRight=0; } inline void _write(const char& x){ if(wtRight>L-32)flush(); wtbuf[wtRight++]=x; } inline void _write(const string& x){ for(auto& c:x)_write(c); } template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline void _write(T x){ if(wtRight>L-32)flush(); if(x==0){ _write('0'); return; } else if(x<0){ _write('-'); if (__builtin_expect(x == std::numeric_limits<T>::min(), 0)) { switch (sizeof(x)) { case 2: _write("32768"); return; case 4: _write("2147483648"); return; case 8: _write("9223372036854775808"); return; } } x=-x; } int pos=0; while(x!=0){ tmp[pos++]=char((x%10)|48); x/=10; } rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i]; wtRight+=pos; } inline void _write(__int128_t x){ if(wtRight>L-40)flush(); if(x==0){ _write('0'); return; } else if(x<0){ _write('-'); x=-x; } int pos=0; while(x!=0){ tmp[pos++]=char((x%10)|48); x/=10; } rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i]; wtRight+=pos; } inline void _write(__uint128_t x){ if(wtRight>L-40)flush(); if(x==0){ _write('0'); return; } int pos=0; while(x!=0){ tmp[pos++]=char((x%10)|48); x/=10; } rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i]; wtRight+=pos; } template<typename T>inline void _write(const vector<T>& v){ rep(i,0,v.size()){ if(i)_write(' '); _write(v[i]); } } public: FastIO(){} ~FastIO(){flush();} inline void read(){} template <typename Head, typename... Tail>inline void read(Head& head,Tail&... tail){ assert(_read(head)); read(tail...); } template<bool ln=true,bool space=false>inline void write(){if(ln)_write('\n');} template <bool ln=true,bool space=false,typename Head, typename... Tail>inline void write(const Head& head,const Tail&... tail){ if(space)_write(' '); _write(head); write<ln,true>(tail...); } }; /** * @brief Fast IO */ #line 3 "sol.cpp" #line 2 "library/Math/modint.hpp" template<int mod=1000000007>struct fp { int v; static constexpr int get_mod(){return mod;} int inv() const{ int tmp,a=v,b=mod,x=1,y=0; while(b)tmp=a/b,a-=tmp*b,swap(a,b),x-=tmp*y,swap(x,y); if(x<0){x+=mod;} return x; } fp(ll x=0){init(x%mod+mod);} fp& init(ll x){v=(x<mod?x:x-mod); return *this;} fp operator-()const{return fp()-*this;} fp pow(ll t){assert(t>=0); fp res=1,b=*this; while(t){if(t&1)res*=b;b*=b;t>>=1;} return res;} fp& operator+=(const fp& x){return init(v+x.v);} fp& operator-=(const fp& x){return init(v+mod-x.v);} fp& operator*=(const fp& x){v=ll(v)*x.v%mod; return *this;} fp& operator/=(const fp& x){v=ll(v)*x.inv()%mod; return *this;} fp operator+(const fp& x)const{return fp(*this)+=x;} fp operator-(const fp& x)const{return fp(*this)-=x;} fp operator*(const fp& x)const{return fp(*this)*=x;} fp operator/(const fp& x)const{return fp(*this)/=x;} bool operator==(const fp& x)const{return v==x.v;} bool operator!=(const fp& x)const{return v!=x.v;} friend istream& operator>>(istream& is,fp& x){return is>>x.v;} friend ostream& operator<<(ostream& os,const fp& x){return os<<x.v;} }; template<typename T>T Inv(ll n){ static const int md=T::get_mod(); static vector<T> buf({0,1}); assert(n>0); n%=md; while(SZ(buf)<=n){ int k=SZ(buf),q=(md+k-1)/k; buf.push_back(buf[k*q-md]*q); } return buf[n]; } template<typename T>T Fact(ll n,bool inv=0){ static const int md=T::get_mod(); static vector<T> buf({1,1}),ibuf({1,1}); assert(n>=0 and n<md); while(SZ(buf)<=n){ buf.push_back(buf.back()*SZ(buf)); ibuf.push_back(ibuf.back()*Inv<T>(SZ(ibuf))); } return inv?ibuf[n]:buf[n]; } template<typename T>T nPr(int n,int r,bool inv=0){if(n<0||n<r||r<0)return 0; return Fact<T>(n,inv)*Fact<T>(n-r,inv^1);} template<typename T>T nCr(int n,int r,bool inv=0){if(n<0||n<r||r<0)return 0; return Fact<T>(n,inv)*Fact<T>(r,inv^1)*Fact<T>(n-r,inv^1);} template<typename T>T nHr(int n,int r,bool inv=0){return nCr<T>(n+r-1,r,inv);} /** * @brief Modint */ #line 2 "library/Convolution/ntt.hpp" template<typename T,unsigned p=3>struct NTT{ vector<T> rt,irt; NTT(int lg=21){ unsigned m=T::get_mod()-1; T prt=p; rt.resize(lg); irt.resize(lg); rep(k,0,lg){ rt[k]=-prt.pow(m>>(k+2)); irt[k]=rt[k].inv(); } } void ntt(vector<T>& f,bool inv=0){ int n=f.size(); if(inv){ for(int m=1;m<n;m<<=1){ T w=1; for(int s=0,t=0;s<n;s+=m*2){ for(int i=s,j=s+m;i<s+m;i++,j++){ auto x=f[i],y=f[j]; f[i]=x+y; f[j]=(x-y)*w; } w*=irt[__builtin_ctz(++t)]; } } T mul=T(n).inv(); rep(i,0,n)f[i]*=mul; }else{ for(int m=n;m>>=1;){ T w=1; for(int s=0,t=0;s<n;s+=m*2){ for(int i=s,j=s+m;i<s+m;i++,j++){ auto x=f[i],y=f[j]*w; f[i]=x+y; f[j]=x-y; } w*=rt[__builtin_ctz(++t)]; } } } } vector<T> mult(const vector<T>& a,const vector<T>& b,bool same=0){ if(a.empty() or b.empty())return vector<T>(); int n=a.size()+b.size()-1,m=1<<__lg(n*2-1); vector<T> res(m); rep(i,0,a.size()){res[i]=a[i];} ntt(res); if(same)rep(i,0,m)res[i]*=res[i]; else{ vector<T> c(m); rep(i,0,b.size())c[i]=b[i]; ntt(c); rep(i,0,m)res[i]*=c[i]; } ntt(res,1); res.resize(n); return res; } }; /** * @brief Number Theoretic Transform */ #line 2 "library/FPS/fps.hpp" template<typename T>struct Poly:vector<T>{ Poly(int n=0){this->assign(n,T());} Poly(const initializer_list<T> f):vector<T>::vector(f){} Poly(const vector<T>& f){this->assign(ALL(f));} T eval(const T& x){ T res; for(int i=this->size()-1;i>=0;i--)res*=x,res+=this->at(i); return res; } Poly rev()const{Poly res=*this; reverse(ALL(res)); return res;} void shrink(){while(!this->empty() and this->back()==0)this->pop_back();} Poly operator>>(int sz)const{ if((int)this->size()<=sz)return {}; Poly ret(*this); ret.erase(ret.begin(),ret.begin()+sz); return ret; } Poly operator<<(int sz)const{ Poly ret(*this); ret.insert(ret.begin(),sz,T(0)); return ret; } vector<T> mult(const vector<T>& a,const vector<T>& b,bool same=0)const{ if(a.empty() or b.empty())return vector<T>(); int n=a.size()+b.size()-1,m=1<<__lg(n*2-1); vector<T> res(m); rep(i,0,a.size())res[i]=a[i]; NTT(res,0); if(same)rep(i,0,m)res[i]*=res[i]; else{ vector<T> c(m); rep(i,0,b.size())c[i]=b[i]; NTT(c,0); rep(i,0,m)res[i]*=c[i]; } NTT(res,1); res.resize(n); return res; } Poly square()const{return Poly(mult(*this,*this,1));} Poly operator-()const{return Poly()-*this;} Poly operator+(const Poly& g)const{return Poly(*this)+=g;} Poly operator+(const T& g)const{return Poly(*this)+=g;} Poly operator-(const Poly& g)const{return Poly(*this)-=g;} Poly operator-(const T& g)const{return Poly(*this)-=g;} Poly operator*(const Poly& g)const{return Poly(*this)*=g;} Poly operator*(const T& g)const{return Poly(*this)*=g;} Poly operator/(const Poly& g)const{return Poly(*this)/=g;} Poly operator/(const T& g)const{return Poly(*this)/=g;} Poly operator%(const Poly& g)const{return Poly(*this)%=g;} pair<Poly,Poly> divmod(const Poly& g)const{ Poly q=*this/g,r=*this-g*q; r.shrink(); return {q,r}; } Poly& operator+=(const Poly& g){ if(g.size()>this->size())this->resize(g.size()); rep(i,0,g.size()){(*this)[i]+=g[i];} return *this; } Poly& operator+=(const T& g){ if(this->empty())this->push_back(0); (*this)[0]+=g; return *this; } Poly& operator-=(const Poly& g){ if(g.size()>this->size())this->resize(g.size()); rep(i,0,g.size()){(*this)[i]-=g[i];} return *this; } Poly& operator-=(const T& g){ if(this->empty())this->push_back(0); (*this)[0]-=g; return *this; } Poly& operator*=(const Poly& g){ *this=mult(*this,g,0); return *this; } Poly& operator*=(const T& g){ rep(i,0,this->size())(*this)[i]*=g; return *this; } Poly& operator/=(const Poly& g){ if(g.size()>this->size()){ this->clear(); return *this; } Poly g2=g; reverse(ALL(*this)); reverse(ALL(g2)); int n=this->size()-g2.size()+1; this->resize(n); g2.resize(n); *this*=g2.inv(); this->resize(n); reverse(ALL(*this)); shrink(); return *this; } Poly& operator/=(const T& g){ rep(i,0,this->size())(*this)[i]/=g; return *this; } Poly& operator%=(const Poly& g){*this-=*this/g*g; shrink(); return *this;} Poly diff()const{ Poly res(this->size()-1); rep(i,0,res.size())res[i]=(*this)[i+1]*(i+1); return res; } Poly inte()const{ Poly res(this->size()+1); for(int i=res.size()-1;i;i--)res[i]=(*this)[i-1]/i; return res; } Poly log()const{ assert(this->front()==1); const int n=this->size(); Poly res=diff()*inv(); res=res.inte(); res.resize(n); return res; } Poly shift(const int& c)const{ const int n=this->size(); Poly res=*this,g(n); g[0]=1; rep(i,1,n)g[i]=g[i-1]*c/i; vector<T> fact(n,1); rep(i,0,n){ if(i)fact[i]=fact[i-1]*i; res[i]*=fact[i]; } res=res.rev(); res*=g; res.resize(n); res=res.rev(); rep(i,0,n)res[i]/=fact[i]; return res; } Poly inv()const{ const int n=this->size(); Poly res(1); res.front()=T(1)/this->front(); for(int k=1;k<n;k<<=1){ Poly f(k*2),g(k*2); rep(i,0,min(n,k*2))f[i]=(*this)[i]; rep(i,0,k)g[i]=res[i]; NTT(f,0); NTT(g,0); rep(i,0,k*2)f[i]*=g[i]; NTT(f,1); rep(i,0,k){f[i]=0; f[i+k]=-f[i+k];} NTT(f,0); rep(i,0,k*2)f[i]*=g[i]; NTT(f,1); rep(i,0,k)f[i]=res[i]; swap(res,f); } res.resize(n); return res; } Poly exp()const{ const int n=this->size(); if(n==1)return Poly({T(1)}); Poly b(2),c(1),z1,z2(2); b[0]=c[0]=z2[0]=z2[1]=1; b[1]=(*this)[1]; for(int k=2;k<n;k<<=1){ Poly y=b; y.resize(k*2); NTT(y,0); z1=z2; Poly z(k); rep(i,0,k)z[i]=y[i]*z1[i]; NTT(z,1); rep(i,0,k>>1)z[i]=0; NTT(z,0); rep(i,0,k)z[i]*=-z1[i]; NTT(z,1); c.insert(c.end(),z.begin()+(k>>1),z.end()); z2=c; z2.resize(k*2); NTT(z2,0); Poly x=*this; x.resize(k); x=x.diff();x.resize(k); NTT(x,0); rep(i,0,k)x[i]*=y[i]; NTT(x,1); Poly bb=b.diff(); rep(i,0,k-1)x[i]-=bb[i]; x.resize(k*2); rep(i,0,k-1){x[k+i]=x[i]; x[i]=0;} NTT(x,0); rep(i,0,k*2)x[i]*=z2[i]; NTT(x,1); x.pop_back(); x=x.inte(); rep(i,k,min(n,k*2))x[i]+=(*this)[i]; rep(i,0,k)x[i]=0; NTT(x,0); rep(i,0,k*2)x[i]*=y[i]; NTT(x,1); b.insert(b.end(),x.begin()+k,x.end()); } b.resize(n); return b; } Poly pow(ll t){ if(t==0){ Poly res(this->size()); res[0]=1; return res; } int n=this->size(),k=0; while(k<n and (*this)[k]==0)k++; Poly res(n); if(__int128_t(t)*k>=n)return res; n-=t*k; Poly g(n); T c=(*this)[k],ic=c.inv(); rep(i,0,n)g[i]=(*this)[i+k]*ic; g=g.log(); for(auto& x:g)x*=t; g=g.exp(); c=c.pow(t); rep(i,0,n)res[i+t*k]=g[i]*c; return res; } void NTT(vector<T>& a,bool inv)const; }; /** * @brief Formal Power Series (NTT-friendly mod) */ #line 7 "sol.cpp" using Fp=fp<998244353>; NTT<Fp,3> ntt; template<>void Poly<Fp>::NTT(vector<Fp>& v,bool inv)const{return ntt.ntt(v,inv);} #line 2 "library/FPS/famous.hpp" template<typename T>vector<T> Bernoulli(int n){ Poly<T> f(n+1); rep(i,0,n+1)f[i]=Fact<T>(i+1,1); f=f.inv(); rep(i,0,n+1)f[i]*=Fact<T>(i); return f; } template<typename T>vector<T> Partition(int n){ Poly<T> f(n+1); f[0]=1; rep(k,1,n+1){ if(1LL*k*(3*k+1)/2<=n)f[1LL*k*(3*k+1)/2]+=(k&1?-1:1); if(1LL*k*(3*k-1)/2<=n)f[1LL*k*(3*k-1)/2]+=(k&1?-1:1); } return f.inv(); } template<typename T>vector<T> StirlingNumber1st(int n){ if(n==0)return Poly<T>({T(1)}); Poly<T> f({T(0),T(1)}); for(int LG=topbit(n)-1;LG>=0;LG--){ int m=n>>LG; f*=f.shift(m>>1); if(m&1)f=(f<<1)+f*T(m-1); } rep(i,0,n+1)if((n-i)&1)f[i]=-f[i]; return f; } template<typename T>vector<T> StirlingNumber2nd(int n){ if(n==0)return Poly<T>({T(1)}); Poly<T> f(n+1),g(n+1); rep(i,0,n+1){ f[i]=Fp(i).pow(n)*Fact<T>(i,1); g[i]=Fact<T>(i,1); if(i&1)g[i]=-g[i]; } f*=g; f.resize(n+1); return f; } template<typename T>vector<T> Bell(int n){ Poly<T> f(n+1); if(n)f[1]=1; rep(i,2,n+1)f[i]=f[i-1]/i; f=f.exp(); T fac=1; rep(i,2,n+1)fac*=i,f[i]*=fac; return f; } /** * @brief Famous Sequence */ #line 12 "sol.cpp" template<typename T>Poly<T> PrefixSum(Poly<T>& f){ if(f.empty())return {}; int n=f.size(); auto ber=Bernoulli<T>(n-1); if(n>=2)ber[1]=-ber[1]; Poly<T> base(n); rep(i,0,n){ ber[i]*=Fact<T>(i,1); if(i)base[i]=f[i]*Fact<T>(i); } reverse(ALL(ber)); base*=ber; Poly<T> ret(n+1); ret[0]=f[0],ret[1]=f[0]; rep(i,1,n+1){ ret[i]+=base[i+n-2]*Fact<T>(i,1); } return ret; } #line 2 "library/Convolution/fft.hpp" namespace FFT{ struct C{ double x,y; C(double _x=0,double _y=0):x(_x),y(_y){} C operator~()const{return C(x,-y);} C operator*(const C& c)const{return C(x*c.x-y*c.y,x*c.y+y*c.x);} C operator+(const C& c)const{return C(x+c.x,y+c.y);} C operator-(const C& c)const{return C(x-c.x,y-c.y);} }; vector<vector<C>> w(1,vector<C>(1,1)); void init(int lg){ for(int d=1,m=1;d<=lg;d++,m<<=1)if(d>=(int)w.size()){ w.emplace_back(m); const double th=M_PI/m; for(int i=0;i<m;i++)w[d][i]=(i&1?C(cos(th*i),sin(th*i)):w[d-1][i>>1]); } } void fft(vector<C>& f,bool inv){ const int n=f.size(); const int lg=__lg(n); if(lg>=(int)w.size())init(lg); if(inv){ for(int k=1;k<=lg;k++){ const int d=1<<(k-1); for(int s=0;s<n;s+=2*d){ for(int i=s;i<s+d;i++){ C x=f[i],y=~w[k][i-s]*f[d+i]; f[i]=x+y; f[d+i]=x-y; } } } } else{ for(int k=lg;k;k--){ const int d=1<<(k-1); for(int s=0;s<n;s+=2*d){ for(int i=s;i<s+d;i++){ C x=f[i],y=f[d+i]; f[i]=x+y; f[d+i]=w[k][i-s]*(x-y); } } } } } template<typename T>vector<T> mult(const vector<T>& a,const vector<T>& b){ const int as=a.size(); const int bs=b.size(); if(!as or !bs)return {}; const int cs=as+bs-1; vector<T> c(cs); if(max(as,bs)<16){ for(int i=0;i<as;i++)for(int j=0;j<bs;j++){ c[i+j]+=(int)a[i]*b[j]; } return c; } const int n=1<<__lg(2*cs-1); vector<C> f(n); for(int i=0;i<as;i++)f[i].x=a[i]; for(int i=0;i<bs;i++)f[i].y=b[i]; fft(f,0); static const C rad(0,-.25); for(int i=0;i<n;i++){ int j=i?i^((1<<__lg(i))-1):0; if(i>j)continue; C x=f[i]+~f[j],y=f[i]-~f[j]; f[i]=x*y*rad; f[j]=~f[i]; } fft(f,1); for(int i=0;i<cs;i++)c[i]=round(f[i].x/n); return c; } template<typename T>vector<T> square(const vector<T>& a){ const int as=a.size(); if(!as)return {}; const int cs=as*2-1; vector<T> c(cs); if(as<16){ for(int i=0;i<as;i++)for(int j=0;j<as;j++){ c[i+j]+=(int)a[i]*a[j]; } return c; } const int n=1<<__lg(cs*2-1); vector<C> f(n); for(int i=0;i<as;i++)f[i].x=a[i]; fft(f,0); for(int i=0;i<n;i++)f[i]=f[i]*f[i]; fft(f,1); for(int i=0;i<cs;i++)c[i]=round(f[i].x/n); return c; } } /** * @brief Fast Fourier Transform */ #line 3 "library/Math/bigint.hpp" template<int D>struct bigint{ static const int B=pow(10,D); int sign=0; vector<ll> v; static int get_D(){return D;} static int get_B(){return B;} bigint(ll x=0){ if(x<0)x*=-1,sign=1; while(x){v.push_back(x%B); x/=B;} } bigint(string s){ if(s[0]=='-')s.erase(s.begin()),sign=1; int add=0,cnt=0,base=1; while(s.size()){ if(cnt==D){ v.push_back(add); cnt=0; add=0; base=1; } add=(s.back()-'0')*base+add; cnt++; base*=10; s.pop_back(); } if(add)v.push_back(add); } bigint operator-()const{bigint res=*this; res.sign^=1;return res;} bigint abs()const{bigint res=*this; res.sign=0; return res;} ll& operator[](const int i){return v[i];} int size()const{return v.size();} void norm(){ rep(i,0,v.size()-1){ if(v[i]>=0){v[i+1]+=v[i]/B; v[i]%=B;} else{int c=(-v[i]+B-1)/B; v[i]+=c*B; v[i+1]-=c;} } while(!v.empty() and v.back()>=B){ int c=v.back()/B; v.back()%=B; v.push_back(c); } while(!v.empty() and v.back()==0)v.pop_back(); } string to_str()const{ string res; if(v.empty())return "0"; if(sign)res+='-'; res+=to_string(v.back()); for(int i=v.size()-2;i>=0;i--){ string add; int w=v[i]; rep(_,0,D){ add+=('0'+(w%10)); w/=10; } reverse(ALL(add)); res+=add; } return res; } friend istream& operator>>(istream& is,bigint<D>& x){ string tmp; is>>tmp; x=bigint(tmp); return is; } friend ostream& operator<<(ostream& os,bigint<D> x){ os<<x.to_str(); return os; } bigint& operator<<=(const int& x){ if(!v.empty()){ vector<ll> add(x,0); v.insert(v.begin(),ALL(add)); } return *this; } bigint& operator>>=(const int& x){ v=vector<ll>(v.begin()+min(x,(int)v.size()),v.end()); return *this; } bigint& operator+=(const bigint& x){ if(sign!=x.sign){*this-=(-x); return *this;} if((int)v.size()<(int)x.size())v.resize(x.size(),0); rep(i,0,x.size()){v[i]+=x.v[i];} norm(); return *this; } bigint& operator-=(const bigint& x){ if(sign!=x.sign){*this+=(-x); return *this;} if(abs()<x.abs()){*this=x-(*this); sign^=1; return *this;} rep(i,0,x.size()){v[i]-=x.v[i];} norm(); return *this; } bigint& operator*=(const bigint& x){ sign^=x.sign; auto v1=FFT::mult(v,x.v); v.assign(v1.size(),0); rep(i,0,v1.size()){ ll val=v1[i]; for(int j=i;val;j++){ if(j==(int)v.size())v.push_back(0); v[j]+=val%B; val/=B; } } norm(); return *this; } bigint& operator/=(const bigint& x){ bigint a=abs(),b=x.abs(); sign^=x.sign; if(a<b)return *this=bigint(); if(b==bigint(1))return *this=a; int d=a.size()-b.size()+1; bigint inv(1LL*B*B/b.v.back()),pre; int cur=2,bcur=1; pre=bigint(0); while(inv!=pre or bcur<b.size()){ bcur=min(bcur<<1,b.size()); bigint c; c.v=vector<ll>(b.v.end()-bcur,b.v.end()); pre=inv; inv*=((bigint(2)<<(cur+bcur-1))-inv*c); cur=min(cur<<1,d); inv.v=vector<ll>(inv.v.end()-cur,inv.v.end()); } inv.v=vector<ll>(inv.v.end()-d,inv.v.end()); bigint res=a*inv; res>>=(a.size()); bigint mul=res*b; while(mul+b<=a){res+=bigint(1); mul+=b;} v=res.v; return *this; } bigint& operator%=(const bigint& x){ bigint div=(*this)/x; (*this)-=div*x; return *this; } bigint square(){ bigint res=*this; res.sign=0; auto v1=FFT::mult(v,v); res.v.assign(v1.size(),0); rep(i,0,v1.size()){ ll val=v1[i]; for(int j=i;val;j++){ if(j==(int)res.v.size())res.v.push_back(0); res.v[j]+=val%B; val/=B; } } res.norm(); return res; } bigint mul(ll x){ bigint res=*this; if(x<0)res.sign^=1,x*=-1; for(int i=res.v.size()-1;i>=0;i--)res.v[i]*=x; res.norm(); return res; } bigint div(ll x){ bigint res=*this; if(x<0)res.sign^=1,x*=-1; for(int i=res.v.size()-1;i>=0;i--){ if(res.v[i]%x!=0 and i!=0){res.v[i-1]+=B*(res.v[i]%x);} res.v[i]/=x; } res.norm(); return res; } bigint operator<<(const int& x)const{return bigint(*this)<<=x;} bigint operator>>(const int& x)const{return bigint(*this)>>=x;} bigint operator+(const bigint& x)const{return bigint(*this)+=x;} bigint operator-(const bigint& x)const{return bigint(*this)-=x;} bigint operator*(const bigint& x)const{return bigint(*this)*=x;} bigint operator/(const bigint& x)const{return bigint(*this)/=x;} bigint operator%(const bigint& x)const{return bigint(*this)%=x;} bool operator<(const bigint& x)const{ if(sign!=x.sign)return sign>x.sign; if((int)v.size()!=(int)x.size()){ if(sign)return (int)x.size()<(int)v.size(); else return (int)v.size()<(int)x.size(); } for(int i=v.size()-1;i>=0;i--)if(v[i]!=x.v[i]){ if(sign)return x.v[i]<v[i]; else return v[i]<x.v[i]; } return false; } bool operator>(const bigint& x)const{return x<*this;} bool operator<=(const bigint& x)const{return !(*this>x);} bool operator>=(const bigint& x)const{return !(*this<x);} bool operator==(const bigint& x)const{return !(*this<x) and !(*this>x);} bool operator!=(const bigint& x)const{return !(*this==x);} }; typedef bigint<4> Bigint; struct Bigfloat{ Bigint v; int p=0; Bigfloat(){} Bigfloat(const ll& _v){v=Bigint(_v);} Bigfloat(const Bigint& _v,int _p=0):v(_v),p(_p){} void set(int _p){if(p<_p){v>>=(_p-p);} else{v<<=(p-_p);} p=_p;} Bigint to_int()const{if(p<0)return v>>(-p); else return v<<p;} Bigfloat& operator+=(const Bigfloat& x){ if(p>x.p)set(x.p),v+=x.v; else v+=x.v<<(x.p-p); return *this; } Bigfloat& operator-=(const Bigfloat& x){ if(p>x.p)set(x.p),v-=x.v; else v-=x.v<<(x.p-p); return *this; } Bigfloat square(){Bigfloat res=*this; res.p*=2; res.v=res.v.square(); return res;} Bigfloat mul(ll x){Bigfloat res=*this; res.v=v.mul(x); return res;} Bigfloat div(ll x){Bigfloat res=*this; res.v=v.div(x); return res;} Bigfloat& operator*=(const Bigfloat& x){p+=x.p; v*=x.v; return *this;} Bigfloat& operator/=(const Bigfloat& x){p-=x.p; v/=x.v; return *this;} Bigfloat operator+(const Bigfloat& x)const{return Bigfloat(*this)+=x;} Bigfloat operator-(const Bigfloat& x)const{return Bigfloat(*this)-=x;} Bigfloat operator*(const Bigfloat& x)const{return Bigfloat(*this)*=x;} Bigfloat operator/(const Bigfloat& x)const{return Bigfloat(*this)/=x;} string to_str(){ string res=v.abs().to_str(); int d=Bigint::get_D(); if(p*d>0)res+=string(p*d,'0'); else if(-p*d>=1 and -p*d<(int)res.size()){ res=res.substr(0,(int)res.size()+p*d)+'.'+res.substr((int)res.size()+p*d); } else if(-p*d>=(int)res.size())res="0."+string(-p*d-(int)res.size(),'0')+res; if(v.sign){res.insert(res.begin(),'-');} return res; } friend ostream& operator<<(ostream& os,Bigfloat x){ os<<x.to_str(); return os; } }; Bigfloat sqrt(ll n,int d){ Bigfloat res(Bigint((ll)sqrt(1LL*Bigint::get_B()*Bigint::get_B()/n)),-1),pre; int cur=1; while(pre.v!=res.v){ cur=min(cur<<1,d); pre=res; Bigfloat add=Bigfloat(1)-res.square().mul(n); add.set(-cur); res+=(res*add).div(2); res.set(-cur); } return res.mul(n); } /** * @brief Big Integer(Float) */ #line 34 "sol.cpp" FastIO io; int main(){ int n; io.read(n); vector<int> a(n-1); io.read(a); string s; io.read(s); Bigint M(s); Poly<Fp> f({1}); rep(i,0,n-1){ Bigint q=M/a[i]; ll r=stoll((M-q*a[i]).to_str()); swap(M,q); f=f.shift(r); Fp base=1; rep(j,0,f.size()){ f[j]*=base; base*=a[i]; } f=PrefixSum(f); } ll x=stoll((M%Fp::get_mod()).to_str()); Fp ret=f.eval(x); io.write(ret.v); return 0; }