結果
| 問題 |
No.2579 Dice Sum Infinity (制約変更版)
|
| コンテスト | |
| ユーザー |
tko919
|
| 提出日時 | 2023-12-11 07:38:47 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 802 ms / 6,000 ms |
| コード長 | 20,844 bytes |
| コンパイル時間 | 3,640 ms |
| コンパイル使用メモリ | 231,556 KB |
| 最終ジャッジ日時 | 2025-02-18 10:20:50 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 7 |
ソースコード
#line 1 "library/Template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(int)(a);i<(int)(b);i++)
#define ALL(v) (v).begin(),(v).end()
#define UNIQUE(v) sort(ALL(v)),(v).erase(unique(ALL(v)),(v).end())
#define SZ(v) (int)v.size()
#define MIN(v) *min_element(ALL(v))
#define MAX(v) *max_element(ALL(v))
#define LB(v,x) int(lower_bound(ALL(v),(x))-(v).begin())
#define UB(v,x) int(upper_bound(ALL(v),(x))-(v).begin())
using ll=long long int;
using ull=unsigned long long;
const int inf = 0x3fffffff;
const ll INF = 0x1fffffffffffffff;
template<typename T>inline bool chmax(T& a,T b){if(a<b){a=b;return 1;}return 0;}
template<typename T>inline bool chmin(T& a,T b){if(a>b){a=b;return 1;}return 0;}
template<typename T,typename U>T ceil(T x,U y){assert(y!=0); if(y<0)x=-x,y=-y; return (x>0?(x+y-1)/y:x/y);}
template<typename T,typename U>T floor(T x,U y){assert(y!=0); if(y<0)x=-x,y=-y; return (x>0?x/y:(x-y+1)/y);}
template<typename T>int popcnt(T x){return __builtin_popcountll(x);}
template<typename T>int topbit(T x){return (x==0?-1:63-__builtin_clzll(x));}
template<typename T>int lowbit(T x){return (x==0?-1:__builtin_ctzll(x));}
#line 2 "library/Utility/fastio.hpp"
#include <unistd.h>
class FastIO{
static constexpr int L=1<<16;
char rdbuf[L];
int rdLeft=0,rdRight=0;
inline void reload(){
int len=rdRight-rdLeft;
memmove(rdbuf,rdbuf+rdLeft,len);
rdLeft=0,rdRight=len;
rdRight+=fread(rdbuf+len,1,L-len,stdin);
}
inline bool skip(){
for(;;){
while(rdLeft!=rdRight and rdbuf[rdLeft]<=' ')rdLeft++;
if(rdLeft==rdRight){
reload();
if(rdLeft==rdRight)return false;
}
else break;
}
return true;
}
template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline bool _read(T& x){
if(!skip())return false;
if(rdLeft+20>=rdRight)reload();
bool neg=false;
if(rdbuf[rdLeft]=='-'){
neg=true;
rdLeft++;
}
x=0;
while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){
x=x*10+(neg?-(rdbuf[rdLeft++]^48):(rdbuf[rdLeft++]^48));
}
return true;
}
inline bool _read(__int128_t& x){
if(!skip())return false;
if(rdLeft+40>=rdRight)reload();
bool neg=false;
if(rdbuf[rdLeft]=='-'){
neg=true;
rdLeft++;
}
x=0;
while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){
x=x*10+(neg?-(rdbuf[rdLeft++]^48):(rdbuf[rdLeft++]^48));
}
return true;
}
inline bool _read(__uint128_t& x){
if(!skip())return false;
if(rdLeft+40>=rdRight)reload();
x=0;
while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){
x=x*10+(rdbuf[rdLeft++]^48);
}
return true;
}
template<typename T,enable_if_t<is_floating_point<T>::value,int> =0>inline bool _read(T& x){
if(!skip())return false;
if(rdLeft+20>=rdRight)reload();
bool neg=false;
if(rdbuf[rdLeft]=='-'){
neg=true;
rdLeft++;
}
x=0;
while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){
x=x*10+(rdbuf[rdLeft++]^48);
}
if(rdbuf[rdLeft]!='.')return true;
rdLeft++;
T base=.1;
while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){
x+=base*(rdbuf[rdLeft++]^48);
base*=.1;
}
if(neg)x=-x;
return true;
}
inline bool _read(char& x){
if(!skip())return false;
if(rdLeft+1>=rdRight)reload();
x=rdbuf[rdLeft++];
return true;
}
inline bool _read(string& x){
if(!skip())return false;
for(;;){
int pos=rdLeft;
while(pos<rdRight and rdbuf[pos]>' ')pos++;
x.append(rdbuf+rdLeft,pos-rdLeft);
if(rdLeft==pos)break;
rdLeft=pos;
if(rdLeft==rdRight)reload();
else break;
}
return true;
}
template<typename T>inline bool _read(vector<T>& v){
for(auto& x:v){
if(!_read(x))return false;
}
return true;
}
char wtbuf[L],tmp[50];
int wtRight=0;
inline void flush(){
fwrite(wtbuf,1,wtRight,stdout);
wtRight=0;
}
inline void _write(const char& x){
if(wtRight>L-32)flush();
wtbuf[wtRight++]=x;
}
inline void _write(const string& x){
for(auto& c:x)_write(c);
}
template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline void _write(T x){
if(wtRight>L-32)flush();
if(x==0){
_write('0');
return;
}
else if(x<0){
_write('-');
if (__builtin_expect(x == std::numeric_limits<T>::min(), 0)) {
switch (sizeof(x)) {
case 2: _write("32768"); return;
case 4: _write("2147483648"); return;
case 8: _write("9223372036854775808"); return;
}
}
x=-x;
}
int pos=0;
while(x!=0){
tmp[pos++]=char((x%10)|48);
x/=10;
}
rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i];
wtRight+=pos;
}
inline void _write(__int128_t x){
if(wtRight>L-40)flush();
if(x==0){
_write('0');
return;
}
else if(x<0){
_write('-');
x=-x;
}
int pos=0;
while(x!=0){
tmp[pos++]=char((x%10)|48);
x/=10;
}
rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i];
wtRight+=pos;
}
inline void _write(__uint128_t x){
if(wtRight>L-40)flush();
if(x==0){
_write('0');
return;
}
int pos=0;
while(x!=0){
tmp[pos++]=char((x%10)|48);
x/=10;
}
rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i];
wtRight+=pos;
}
template<typename T>inline void _write(const vector<T>& v){
rep(i,0,v.size()){
if(i)_write(' ');
_write(v[i]);
}
}
public:
FastIO(){}
~FastIO(){flush();}
inline void read(){}
template <typename Head, typename... Tail>inline void read(Head& head,Tail&... tail){
assert(_read(head));
read(tail...);
}
template<bool ln=true,bool space=false>inline void write(){if(ln)_write('\n');}
template <bool ln=true,bool space=false,typename Head, typename... Tail>inline void write(const Head& head,const Tail&... tail){
if(space)_write(' ');
_write(head);
write<ln,true>(tail...);
}
};
/**
* @brief Fast IO
*/
#line 3 "sol.cpp"
#line 2 "library/Math/modint.hpp"
template<int mod=1000000007>struct fp {
int v;
static constexpr int get_mod(){return mod;}
int inv() const{
int tmp,a=v,b=mod,x=1,y=0;
while(b)tmp=a/b,a-=tmp*b,swap(a,b),x-=tmp*y,swap(x,y);
if(x<0){x+=mod;} return x;
}
fp(ll x=0){init(x%mod+mod);}
fp& init(ll x){v=(x<mod?x:x-mod); return *this;}
fp operator-()const{return fp()-*this;}
fp pow(ll t){assert(t>=0); fp res=1,b=*this; while(t){if(t&1)res*=b;b*=b;t>>=1;} return res;}
fp& operator+=(const fp& x){return init(v+x.v);}
fp& operator-=(const fp& x){return init(v+mod-x.v);}
fp& operator*=(const fp& x){v=ll(v)*x.v%mod; return *this;}
fp& operator/=(const fp& x){v=ll(v)*x.inv()%mod; return *this;}
fp operator+(const fp& x)const{return fp(*this)+=x;}
fp operator-(const fp& x)const{return fp(*this)-=x;}
fp operator*(const fp& x)const{return fp(*this)*=x;}
fp operator/(const fp& x)const{return fp(*this)/=x;}
bool operator==(const fp& x)const{return v==x.v;}
bool operator!=(const fp& x)const{return v!=x.v;}
friend istream& operator>>(istream& is,fp& x){return is>>x.v;}
friend ostream& operator<<(ostream& os,const fp& x){return os<<x.v;}
};
template<typename T>T Inv(ll n){
static const int md=T::get_mod();
static vector<T> buf({0,1});
assert(n>0);
n%=md;
while(SZ(buf)<=n){
int k=SZ(buf),q=(md+k-1)/k;
buf.push_back(buf[k*q-md]*q);
}
return buf[n];
}
template<typename T>T Fact(ll n,bool inv=0){
static const int md=T::get_mod();
static vector<T> buf({1,1}),ibuf({1,1});
assert(n>=0 and n<md);
while(SZ(buf)<=n){
buf.push_back(buf.back()*SZ(buf));
ibuf.push_back(ibuf.back()*Inv<T>(SZ(ibuf)));
}
return inv?ibuf[n]:buf[n];
}
template<typename T>T nPr(int n,int r,bool inv=0){if(n<0||n<r||r<0)return 0; return Fact<T>(n,inv)*Fact<T>(n-r,inv^1);}
template<typename T>T nCr(int n,int r,bool inv=0){if(n<0||n<r||r<0)return 0; return Fact<T>(n,inv)*Fact<T>(r,inv^1)*Fact<T>(n-r,inv^1);}
template<typename T>T nHr(int n,int r,bool inv=0){return nCr<T>(n+r-1,r,inv);}
/**
* @brief Modint
*/
#line 2 "library/Convolution/ntt.hpp"
template<typename T,unsigned p=3>struct NTT{
vector<T> rt,irt;
NTT(int lg=21){
unsigned m=T::get_mod()-1; T prt=p;
rt.resize(lg); irt.resize(lg);
rep(k,0,lg){
rt[k]=-prt.pow(m>>(k+2));
irt[k]=rt[k].inv();
}
}
void ntt(vector<T>& f,bool inv=0){
int n=f.size();
if(inv){
for(int m=1;m<n;m<<=1){ T w=1;
for(int s=0,t=0;s<n;s+=m*2){
for(int i=s,j=s+m;i<s+m;i++,j++){
auto x=f[i],y=f[j];
f[i]=x+y; f[j]=(x-y)*w;
} w*=irt[__builtin_ctz(++t)];
}
} T mul=T(n).inv(); rep(i,0,n)f[i]*=mul;
}else{
for(int m=n;m>>=1;){ T w=1;
for(int s=0,t=0;s<n;s+=m*2){
for(int i=s,j=s+m;i<s+m;i++,j++){
auto x=f[i],y=f[j]*w;
f[i]=x+y; f[j]=x-y;
} w*=rt[__builtin_ctz(++t)];
}
}
}
}
vector<T> mult(const vector<T>& a,const vector<T>& b,bool same=0){
if(a.empty() or b.empty())return vector<T>();
int n=a.size()+b.size()-1,m=1<<__lg(n*2-1);
vector<T> res(m); rep(i,0,a.size()){res[i]=a[i];} ntt(res);
if(same)rep(i,0,m)res[i]*=res[i];
else{
vector<T> c(m); rep(i,0,b.size())c[i]=b[i];
ntt(c); rep(i,0,m)res[i]*=c[i];
} ntt(res,1); res.resize(n); return res;
}
};
/**
* @brief Number Theoretic Transform
*/
#line 2 "library/FPS/fps.hpp"
template<typename T>struct Poly:vector<T>{
Poly(int n=0){this->assign(n,T());}
Poly(const initializer_list<T> f):vector<T>::vector(f){}
Poly(const vector<T>& f){this->assign(ALL(f));}
T eval(const T& x){
T res;
for(int i=this->size()-1;i>=0;i--)res*=x,res+=this->at(i);
return res;
}
Poly rev()const{Poly res=*this; reverse(ALL(res)); return res;}
void shrink(){while(!this->empty() and this->back()==0)this->pop_back();}
Poly operator>>(int sz)const{
if((int)this->size()<=sz)return {};
Poly ret(*this);
ret.erase(ret.begin(),ret.begin()+sz);
return ret;
}
Poly operator<<(int sz)const{
Poly ret(*this);
ret.insert(ret.begin(),sz,T(0));
return ret;
}
vector<T> mult(const vector<T>& a,const vector<T>& b,bool same=0)const{
if(a.empty() or b.empty())return vector<T>();
int n=a.size()+b.size()-1,m=1<<__lg(n*2-1);
vector<T> res(m);
rep(i,0,a.size())res[i]=a[i];
NTT(res,0);
if(same)rep(i,0,m)res[i]*=res[i];
else{
vector<T> c(m);
rep(i,0,b.size())c[i]=b[i];
NTT(c,0);
rep(i,0,m)res[i]*=c[i];
}
NTT(res,1);
res.resize(n);
return res;
}
Poly square()const{return Poly(mult(*this,*this,1));}
Poly operator-()const{return Poly()-*this;}
Poly operator+(const Poly& g)const{return Poly(*this)+=g;}
Poly operator+(const T& g)const{return Poly(*this)+=g;}
Poly operator-(const Poly& g)const{return Poly(*this)-=g;}
Poly operator-(const T& g)const{return Poly(*this)-=g;}
Poly operator*(const Poly& g)const{return Poly(*this)*=g;}
Poly operator*(const T& g)const{return Poly(*this)*=g;}
Poly operator/(const Poly& g)const{return Poly(*this)/=g;}
Poly operator/(const T& g)const{return Poly(*this)/=g;}
Poly operator%(const Poly& g)const{return Poly(*this)%=g;}
pair<Poly,Poly> divmod(const Poly& g)const{
Poly q=*this/g,r=*this-g*q;
r.shrink();
return {q,r};
}
Poly& operator+=(const Poly& g){
if(g.size()>this->size())this->resize(g.size());
rep(i,0,g.size()){(*this)[i]+=g[i];} return *this;
}
Poly& operator+=(const T& g){
if(this->empty())this->push_back(0);
(*this)[0]+=g; return *this;
}
Poly& operator-=(const Poly& g){
if(g.size()>this->size())this->resize(g.size());
rep(i,0,g.size()){(*this)[i]-=g[i];} return *this;
}
Poly& operator-=(const T& g){
if(this->empty())this->push_back(0);
(*this)[0]-=g; return *this;
}
Poly& operator*=(const Poly& g){
*this=mult(*this,g,0);
return *this;
}
Poly& operator*=(const T& g){
rep(i,0,this->size())(*this)[i]*=g;
return *this;
}
Poly& operator/=(const Poly& g){
if(g.size()>this->size()){
this->clear(); return *this;
}
Poly g2=g;
reverse(ALL(*this));
reverse(ALL(g2));
int n=this->size()-g2.size()+1;
this->resize(n); g2.resize(n);
*this*=g2.inv(); this->resize(n);
reverse(ALL(*this));
shrink();
return *this;
}
Poly& operator/=(const T& g){
rep(i,0,this->size())(*this)[i]/=g;
return *this;
}
Poly& operator%=(const Poly& g){*this-=*this/g*g; shrink(); return *this;}
Poly diff()const{
Poly res(this->size()-1);
rep(i,0,res.size())res[i]=(*this)[i+1]*(i+1);
return res;
}
Poly inte()const{
Poly res(this->size()+1);
for(int i=res.size()-1;i;i--)res[i]=(*this)[i-1]/i;
return res;
}
Poly log()const{
assert(this->front()==1); const int n=this->size();
Poly res=diff()*inv(); res=res.inte();
res.resize(n); return res;
}
Poly shift(const int& c)const{
const int n=this->size();
Poly res=*this,g(n); g[0]=1; rep(i,1,n)g[i]=g[i-1]*c/i;
vector<T> fact(n,1);
rep(i,0,n){
if(i)fact[i]=fact[i-1]*i;
res[i]*=fact[i];
}
res=res.rev();
res*=g;
res.resize(n);
res=res.rev();
rep(i,0,n)res[i]/=fact[i];
return res;
}
Poly inv()const{
const int n=this->size();
Poly res(1); res.front()=T(1)/this->front();
for(int k=1;k<n;k<<=1){
Poly f(k*2),g(k*2);
rep(i,0,min(n,k*2))f[i]=(*this)[i];
rep(i,0,k)g[i]=res[i];
NTT(f,0);
NTT(g,0);
rep(i,0,k*2)f[i]*=g[i];
NTT(f,1);
rep(i,0,k){f[i]=0; f[i+k]=-f[i+k];}
NTT(f,0);
rep(i,0,k*2)f[i]*=g[i];
NTT(f,1);
rep(i,0,k)f[i]=res[i];
swap(res,f);
} res.resize(n); return res;
}
Poly exp()const{
const int n=this->size();
if(n==1)return Poly({T(1)});
Poly b(2),c(1),z1,z2(2);
b[0]=c[0]=z2[0]=z2[1]=1; b[1]=(*this)[1];
for(int k=2;k<n;k<<=1){
Poly y=b;
y.resize(k*2);
NTT(y,0);
z1=z2;
Poly z(k);
rep(i,0,k)z[i]=y[i]*z1[i];
NTT(z,1);
rep(i,0,k>>1)z[i]=0;
NTT(z,0);
rep(i,0,k)z[i]*=-z1[i];
NTT(z,1);
c.insert(c.end(),z.begin()+(k>>1),z.end());
z2=c;
z2.resize(k*2);
NTT(z2,0);
Poly x=*this;
x.resize(k);
x=x.diff();x.resize(k);
NTT(x,0);
rep(i,0,k)x[i]*=y[i];
NTT(x,1);
Poly bb=b.diff();
rep(i,0,k-1)x[i]-=bb[i];
x.resize(k*2);
rep(i,0,k-1){x[k+i]=x[i]; x[i]=0;}
NTT(x,0);
rep(i,0,k*2)x[i]*=z2[i];
NTT(x,1);
x.pop_back();
x=x.inte();
rep(i,k,min(n,k*2))x[i]+=(*this)[i];
rep(i,0,k)x[i]=0;
NTT(x,0);
rep(i,0,k*2)x[i]*=y[i];
NTT(x,1);
b.insert(b.end(),x.begin()+k,x.end());
} b.resize(n); return b;
}
Poly pow(ll t){
if(t==0){
Poly res(this->size()); res[0]=1;
return res;
}
int n=this->size(),k=0; while(k<n and (*this)[k]==0)k++;
Poly res(n); if(__int128_t(t)*k>=n)return res;
n-=t*k; Poly g(n); T c=(*this)[k],ic=c.inv();
rep(i,0,n)g[i]=(*this)[i+k]*ic;
g=g.log(); for(auto& x:g)x*=t; g=g.exp();
c=c.pow(t); rep(i,0,n)res[i+t*k]=g[i]*c; return res;
}
void NTT(vector<T>& a,bool inv)const;
};
/**
* @brief Formal Power Series (NTT-friendly mod)
*/
#line 7 "sol.cpp"
using Fp=fp<998244353>;
NTT<Fp,3> ntt;
template<>void Poly<Fp>::NTT(vector<Fp>& v,bool inv)const{return ntt.ntt(v,inv);}
#line 2 "library/FPS/nthterm.hpp"
template<typename T>T nth(Poly<T> p,Poly<T> q,ll n){
while(n){
Poly<T> base(q),np,nq;
for(int i=1;i<(int)q.size();i+=2)base[i]=-base[i];
p*=base; q*=base;
for(int i=n&1;i<(int)p.size();i+=2)np.emplace_back(p[i]);
for(int i=0;i<(int)q.size();i+=2)nq.emplace_back(q[i]);
swap(p,np); swap(q,nq);
n>>=1;
}
return p[0]/q[0];
}
/**
* @brief Bostan-Mori Algorithm
*/
#line 2 "library/FPS/halfgcd.hpp"
namespace HalfGCD{
template<typename T>using P=array<T,2>;
template<typename T>using Mat=array<T,4>;
template<typename T>P<T> operator*(const Mat<T>& a,const P<T>& b){
P<T> ret={a[0]*b[0]+a[1]*b[1],a[2]*b[0]+a[3]*b[1]};
rep(i,0,2)ret[i].shrink();
return ret;
}
template<typename T>Mat<T> operator*(const Mat<T>& a,const Mat<T>& b){
Mat<T> ret={a[0]*b[0]+a[1]*b[2],a[0]*b[1]+a[1]*b[3],
a[2]*b[0]+a[3]*b[2],a[2]*b[1]+a[3]*b[3]};
rep(i,0,4)ret[i].shrink();
return ret;
}
template<typename T>Mat<T> HGCD(P<T> a){
int m=(SZ(a[0])+1)>>1;
if(SZ(a[1])<=m){
Mat<T> ret;
ret[0]={1},ret[3]={1};
return ret;
}
auto R=HGCD(P<T>{a[0]>>m,a[1]>>m});
a=R*a;
if(SZ(a[1])<=m)return R;
Mat<T> Q;
Q[1]={1},Q[2]={1},Q[3]=-(a[0]/a[1]);
R=Q*R,a=Q*a;
if(SZ(a[1])<=m)return R;
int k=2*m+1-SZ(a[0]);
auto H=HGCD(P<T>{a[0]>>k,a[1]>>k});
return H*R;
}
template<typename T>Mat<T> InnerGCD(P<T> a){
if(SZ(a[0])<SZ(a[1])){
auto M=InnerGCD(P<T>{a[1],a[0]});
swap(M[0],M[1]);
swap(M[2],M[3]);
return M;
}
auto m0=HGCD(a);
a=m0*a;
if(a[1].empty())return m0;
Mat<T> Q;
Q[1]={1},Q[2]={1},Q[3]=-(a[0]/a[1]);
m0=Q*m0,a=Q*a;
if(a[1].empty())return m0;
return InnerGCD(a)*m0;
}
template<typename T>T gcd(const T& a,const T& b){
P<T> p({a,b});
auto M=InnerGCD(p);
p=M*p;
if(!p[0].empty()){
auto coeff=p[0].back().inv();
for(auto& x:p[0])x*=coeff;
}
return p[0];
}
template<typename T>pair<bool,T> PolyInv(const T& a,const T& b){
P<T> p({a,b});
auto M=InnerGCD(p);
T g=(M*p)[0];
if(g.size()!=1)return {false,{}};
P<T> x({T({1}),b});
auto ret=(M*x)[0]%b;
auto coeff=g[0].inv();
for(auto& x:ret)x*=coeff;
return {true,ret};
}
}
/**
* @brief Half GCD
*/
#line 13 "sol.cpp"
FastIO io;
int main(){
int M,K,R;
io.read(M,K,R);
Poly<Fp> h(K+1);
const Fp invm=Fp(M).inv();
const Fp invkm=Fp(ll(K)*M).inv();
rep(i,1,K+1)h[i]=invkm;
h[0]=-invm;
Poly<Fp> pw({0,1}),one({1}),rem,base({1});
while(M){
if(M&1){
rem+=one*base;
base*=pw;
rem%=h;
base%=h;
}
M>>=1;
one+=one*pw;
one%=h;
pw*=pw;
pw%=h;
}
auto [_,P]=HalfGCD::PolyInv(rem,h);
P+=Poly<Fp>({-1,1});
h*=Poly<Fp>({-1,1});
Fp ret=nth(P,h,R)-nth(P,h,0);
io.write(ret.v);
return 0;
}
tko919