結果

問題 No.1153 ねこちゃんゲーム
ユーザー vwxyzvwxyz
提出日時 2023-12-16 02:10:49
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 2,415 ms / 2,500 ms
コード長 12,096 bytes
コンパイル時間 533 ms
コンパイル使用メモリ 82,984 KB
実行使用メモリ 323,556 KB
最終ジャッジ日時 2024-09-27 07:10:38
合計ジャッジ時間 73,327 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 40
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
readline=sys.stdin.readline
class Graph:
def __init__(self,V,edges=None,graph=None,directed=False,weighted=False,inf=float("inf")):
self.V=V
self.directed=directed
self.weighted=weighted
self.inf=inf
if graph!=None:
self.graph=graph
"""
self.edges=[]
for i in range(self.V):
if self.weighted:
for j,d in self.graph[i]:
if self.directed or not self.directed and i<=j:
self.edges.append((i,j,d))
else:
for j in self.graph[i]:
if self.directed or not self.directed and i<=j:
self.edges.append((i,j))
"""
else:
self.edges=edges
self.graph=[[] for i in range(self.V)]
if weighted:
for i,j,d in self.edges:
self.graph[i].append((j,d))
if not self.directed:
self.graph[j].append((i,d))
else:
for i,j in self.edges:
self.graph[i].append(j)
if not self.directed:
self.graph[j].append(i)
def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False
        ,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False):
seen=[False]*self.V
finished=[False]*self.V
if directed_acyclic or cycle_detection or topological_sort:
dag=True
if euler_tour:
et=[]
if linked_components:
lc=[]
if lowlink:
order=[None]*self.V
ll=[None]*self.V
idx=0
if parents or cycle_detection or lowlink or subtree_size:
ps=[None]*self.V
if postorder or topological_sort:
post=[]
if preorder:
pre=[]
if subtree_size:
ss=[1]*self.V
if unweighted_dist or bipartite_graph:
uwd=[self.inf]*self.V
uwd[s]=0
if weighted_dist:
wd=[self.inf]*self.V
wd[s]=0
stack=[(s,0)] if self.weighted else [s]
while stack:
if self.weighted:
x,d=stack.pop()
else:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append((x,d) if self.weighted else x)
if euler_tour:
et.append(x)
if linked_components:
lc.append(x)
if lowlink:
order[x]=idx
ll[x]=idx
idx+=1
if preorder:
pre.append(x)
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
stack.append((y,d) if self.weighted else y)
if parents or cycle_detection or lowlink or subtree_size:
ps[y]=x
if unweighted_dist or bipartite_graph:
uwd[y]=uwd[x]+1
if weighted_dist:
wd[y]=wd[x]+d
elif not finished[y]:
if (directed_acyclic or cycle_detection or topological_sort) and dag:
dag=False
if cycle_detection:
cd=(y,x)
elif not finished[x]:
finished[x]=True
if euler_tour:
et.append(~x)
if lowlink:
bl=True
for y in self.graph[x]:
if self.weighted:
y,d=y
if ps[x]==y and bl:
bl=False
continue
ll[x]=min(ll[x],order[y])
if x!=s:
ll[ps[x]]=min(ll[ps[x]],ll[x])
if postorder or topological_sort:
post.append(x)
if subtree_size:
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==ps[x]:
continue
ss[x]+=ss[y]
if bipartite_graph:
bg=[[],[]]
for tpl in self.edges:
x,y=tpl[:2] if self.weighted else tpl
if uwd[x]==self.inf or uwd[y]==self.inf:
continue
if not uwd[x]%2^uwd[y]%2:
bg=False
break
else:
for x in range(self.V):
if uwd[x]==self.inf:
continue
bg[uwd[x]%2].append(x)
retu=()
if bipartite_graph:
retu+=(bg,)
if cycle_detection:
if dag:
cd=[]
else:
y,x=cd
cd=self.Route_Restoration(y,x,ps)
retu+=(cd,)
if directed_acyclic:
retu+=(dag,)
if euler_tour:
retu+=(et,)
if linked_components:
retu+=(lc,)
if lowlink:
retu=(ll,)
if parents:
retu+=(ps,)
if postorder:
retu+=(post,)
if preorder:
retu+=(pre,)
if subtree_size:
retu+=(ss,)
if topological_sort:
if dag:
tp_sort=post[::-1]
else:
tp_sort=[]
retu+=(tp_sort,)
if unweighted_dist:
retu+=(uwd,)
if weighted_dist:
retu+=(wd,)
if len(retu)==1:
retu=retu[0]
return retu
def Build_Rerooting(self,s,f,f_merge,subtree=False):
self.rerooting_s=s
self.rerooting_f=f
self.rerooting_f_merge=f_merge
self.subtree=subtree
if self.subtree:
parents,postorder,preorder,self.rerooting_depth=self.SIV_DFS(s,parents=True,postorder=True,preorder=True,unweighted_dist=True)
parents[s]=s
self.rerooting_PD=Path_Doubling(self.V,parents)
self.rerooting_PD.Build_Next()
parents[s]=None
else:
parents,postorder,preorder=self.SIV_DFS(s,parents=True,postorder=True,preorder=True)
self.rerooting_lower_dp=[None]*self.V
for x in postorder:
children=[y[0] if self.weighted else y for y in self.graph[x] if (y[0] if self.weighted else y)!=parents[x]]
self.rerooting_lower_dp[x]=self.rerooting_f_merge(x,[self.rerooting_f(y,self.rerooting_lower_dp[y]) for y in children])
self.rerooting_upper_dp=[None]*self.V
for x in preorder:
children=[y[0] if self.weighted else y for y in self.graph[x] if (y[0] if self.weighted else y)!=parents[x]]
left_accumule_f=[None]*(len(children)+1)
right_accumule_f=[None]*(len(children)+1)
left_accumule_f[0]=self.rerooting_f_merge(x,[])
for i in range(1,len(children)+1):
left_accumule_f[i]=self.rerooting_f_merge(x,[left_accumule_f[i-1],self.rerooting_f(children[i-1],self.rerooting_lower_dp[children[i
                    -1]])])
right_accumule_f[len(children)]=self.rerooting_f_merge(x,[])
for i in range(len(children)-1,-1,-1):
right_accumule_f[i]=self.rerooting_f_merge(x,[right_accumule_f[i+1],self.rerooting_f(children[i],self.rerooting_lower_dp[children[i]]
                    )])
for i in range(len(children)):
if parents[x]==None:
self.rerooting_upper_dp[children[i]]=self.rerooting_f(x,self.rerooting_f_merge(x,[left_accumule_f[i],right_accumule_f[i+1]]))
else:
self.rerooting_upper_dp[children[i]]=self.rerooting_f(x,self.rerooting_f_merge(x,[left_accumule_f[i],right_accumule_f[i+1],self
                        .rerooting_upper_dp[x]]))
if self.subtree:
self.rerooting_parents=parents
def Rerooting(self,root,subtree=None):
assert self.subtree or subtree==None
if self.subtree and root!=subtree:
if self.rerooting_depth[subtree]>=self.rerooting_depth[root]:
x=self.rerooting_parents[subtree]
else:
x=self.rerooting_PD.Permutation_Doubling(root,self.rerooting_depth[root]-self.rerooting_depth[subtree]-1)
if self.rerooting_parents[x]!=subtree:
x=self.rerooting_parents[subtree]
if self.rerooting_parents[subtree]==x:
retu=self.rerooting_f(subtree,self.rerooting_lower_dp[subtree])
else:
retu=self.rerooting_upper_dp[x]
else:
if root==self.rerooting_s:
retu=self.rerooting_f(root,self.rerooting_lower_dp[root])
else:
retu=self.rerooting_f(root,self.rerooting_f_merge(root,[self.rerooting_lower_dp[root],self.rerooting_upper_dp[root]]))
return retu
class Path_Doubling:
def __init__(self,N,permutation,lst=None,f=None,e=None):
self.N=N
self.permutation=permutation
self.lst=lst
self.f=f
self.e=e
def Build_Next(self,K=None):
if K==None:
K=self.N
self.k=K.bit_length()
self.permutation_doubling=[[None]*self.N for k in range(self.k)]
for n in range(self.N):
self.permutation_doubling[0][n]=self.permutation[n]
if self.lst!=None:
self.doubling=[[None]*self.N for k in range(self.k)]
for n in range(self.N):
self.doubling[0][n]=self.lst[n]
for k in range(1,self.k):
for n in range(self.N):
if self.permutation_doubling[k-1][n]!=None:
self.permutation_doubling[k][n]=self.permutation_doubling[k-1][self.permutation_doubling[k-1][n]]
if self.f!=None:
self.doubling[k][n]=self.f(self.doubling[n][k-1],self.doubling[k-1][self.permutation_doubling[k-1][n]])
def Permutation_Doubling(self,N,K):
if K<0 or 1<<self.k<=K:
return None
for k in range(self.k):
if K>>k&1 and N!=None:
N=self.permutation_doubling[k][N]
return N
def Doubling(self,N,K):
if K<0:
return self.e
retu=self.e
for k in range(self.k):
if K>>k&1:
if self.permutation_doubling[k][N]==None:
return None
retu=self.f(retu,self.doubling[k][N])
N=self.permutation_doubling[k][N]
return N,retu
def Bisect(self,x,is_ok):
if not is_ok(x):
return -1,None
K=0
for k in range(self.k-1,-1,-1):
if is_ok(self.permutation_doubling[k][x]):
K|=1<<k
x=self.permutation_doubling[k][x]
return K,x
N,M=map(int,readline().split())
A=list(map(int,readline().split()))
for m in range(M):
A[m]-=1
edges=[]
for n in range(N-1):
u,v=map(int,readline().split())
u-=1;v-=1
edges.append((u,v))
G=Graph(N,edges=edges)
def f(x,merged_a):
g=0
while g in merged_a:
g+=1
return {g}
def f_merge(x,lst):
retu=set()
for se in lst:
retu|=se
return retu
G.Build_Rerooting(0,f,f_merge,subtree=True)
gr=0
grundy=[list(G.Rerooting(x,x))[0] for x in range(N)]
for a in A:
gr^=grundy[a]
if gr:
seen=[False]*N
for m in range(M):
x=A[m]
if seen[x]:
continue
seen[x]=True
for y in G.graph[x]:
if gr==grundy[x]^list(G.Rerooting(x,y))[0]:
i,v=m+1,y+1
else:
i,v=-1,-1
print(i,v)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0