結果
問題 | No.1153 ねこちゃんゲーム |
ユーザー | vwxyz |
提出日時 | 2023-12-16 02:10:49 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 2,415 ms / 2,500 ms |
コード長 | 12,096 bytes |
コンパイル時間 | 533 ms |
コンパイル使用メモリ | 82,984 KB |
実行使用メモリ | 323,556 KB |
最終ジャッジ日時 | 2024-09-27 07:10:38 |
合計ジャッジ時間 | 73,327 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 36 ms
55,116 KB |
testcase_01 | AC | 36 ms
56,528 KB |
testcase_02 | AC | 103 ms
77,356 KB |
testcase_03 | AC | 91 ms
76,824 KB |
testcase_04 | AC | 105 ms
77,336 KB |
testcase_05 | AC | 95 ms
76,996 KB |
testcase_06 | AC | 100 ms
77,248 KB |
testcase_07 | AC | 2,025 ms
243,844 KB |
testcase_08 | AC | 1,613 ms
240,072 KB |
testcase_09 | AC | 2,004 ms
249,216 KB |
testcase_10 | AC | 1,631 ms
240,880 KB |
testcase_11 | AC | 2,008 ms
243,712 KB |
testcase_12 | AC | 2,004 ms
249,212 KB |
testcase_13 | AC | 1,658 ms
240,508 KB |
testcase_14 | AC | 2,106 ms
248,516 KB |
testcase_15 | AC | 1,685 ms
246,500 KB |
testcase_16 | AC | 2,038 ms
245,500 KB |
testcase_17 | AC | 2,037 ms
248,940 KB |
testcase_18 | AC | 1,627 ms
241,796 KB |
testcase_19 | AC | 2,006 ms
241,896 KB |
testcase_20 | AC | 1,607 ms
243,448 KB |
testcase_21 | AC | 1,982 ms
241,144 KB |
testcase_22 | AC | 2,199 ms
242,684 KB |
testcase_23 | AC | 1,682 ms
242,816 KB |
testcase_24 | AC | 1,925 ms
246,528 KB |
testcase_25 | AC | 1,591 ms
243,828 KB |
testcase_26 | AC | 1,996 ms
240,384 KB |
testcase_27 | AC | 2,415 ms
266,872 KB |
testcase_28 | AC | 1,985 ms
266,464 KB |
testcase_29 | AC | 2,316 ms
267,772 KB |
testcase_30 | AC | 1,934 ms
267,832 KB |
testcase_31 | AC | 2,287 ms
266,620 KB |
testcase_32 | AC | 1,753 ms
320,012 KB |
testcase_33 | AC | 1,573 ms
316,544 KB |
testcase_34 | AC | 1,868 ms
318,844 KB |
testcase_35 | AC | 1,684 ms
317,376 KB |
testcase_36 | AC | 1,873 ms
319,248 KB |
testcase_37 | AC | 1,009 ms
322,740 KB |
testcase_38 | AC | 1,042 ms
323,052 KB |
testcase_39 | AC | 1,118 ms
323,556 KB |
testcase_40 | AC | 990 ms
321,524 KB |
testcase_41 | AC | 1,039 ms
322,300 KB |
ソースコード
import sys readline=sys.stdin.readline class Graph: def __init__(self,V,edges=None,graph=None,directed=False,weighted=False,inf=float("inf")): self.V=V self.directed=directed self.weighted=weighted self.inf=inf if graph!=None: self.graph=graph """ self.edges=[] for i in range(self.V): if self.weighted: for j,d in self.graph[i]: if self.directed or not self.directed and i<=j: self.edges.append((i,j,d)) else: for j in self.graph[i]: if self.directed or not self.directed and i<=j: self.edges.append((i,j)) """ else: self.edges=edges self.graph=[[] for i in range(self.V)] if weighted: for i,j,d in self.edges: self.graph[i].append((j,d)) if not self.directed: self.graph[j].append((i,d)) else: for i,j in self.edges: self.graph[i].append(j) if not self.directed: self.graph[j].append(i) def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False): seen=[False]*self.V finished=[False]*self.V if directed_acyclic or cycle_detection or topological_sort: dag=True if euler_tour: et=[] if linked_components: lc=[] if lowlink: order=[None]*self.V ll=[None]*self.V idx=0 if parents or cycle_detection or lowlink or subtree_size: ps=[None]*self.V if postorder or topological_sort: post=[] if preorder: pre=[] if subtree_size: ss=[1]*self.V if unweighted_dist or bipartite_graph: uwd=[self.inf]*self.V uwd[s]=0 if weighted_dist: wd=[self.inf]*self.V wd[s]=0 stack=[(s,0)] if self.weighted else [s] while stack: if self.weighted: x,d=stack.pop() else: x=stack.pop() if not seen[x]: seen[x]=True stack.append((x,d) if self.weighted else x) if euler_tour: et.append(x) if linked_components: lc.append(x) if lowlink: order[x]=idx ll[x]=idx idx+=1 if preorder: pre.append(x) for y in self.graph[x]: if self.weighted: y,d=y if not seen[y]: stack.append((y,d) if self.weighted else y) if parents or cycle_detection or lowlink or subtree_size: ps[y]=x if unweighted_dist or bipartite_graph: uwd[y]=uwd[x]+1 if weighted_dist: wd[y]=wd[x]+d elif not finished[y]: if (directed_acyclic or cycle_detection or topological_sort) and dag: dag=False if cycle_detection: cd=(y,x) elif not finished[x]: finished[x]=True if euler_tour: et.append(~x) if lowlink: bl=True for y in self.graph[x]: if self.weighted: y,d=y if ps[x]==y and bl: bl=False continue ll[x]=min(ll[x],order[y]) if x!=s: ll[ps[x]]=min(ll[ps[x]],ll[x]) if postorder or topological_sort: post.append(x) if subtree_size: for y in self.graph[x]: if self.weighted: y,d=y if y==ps[x]: continue ss[x]+=ss[y] if bipartite_graph: bg=[[],[]] for tpl in self.edges: x,y=tpl[:2] if self.weighted else tpl if uwd[x]==self.inf or uwd[y]==self.inf: continue if not uwd[x]%2^uwd[y]%2: bg=False break else: for x in range(self.V): if uwd[x]==self.inf: continue bg[uwd[x]%2].append(x) retu=() if bipartite_graph: retu+=(bg,) if cycle_detection: if dag: cd=[] else: y,x=cd cd=self.Route_Restoration(y,x,ps) retu+=(cd,) if directed_acyclic: retu+=(dag,) if euler_tour: retu+=(et,) if linked_components: retu+=(lc,) if lowlink: retu=(ll,) if parents: retu+=(ps,) if postorder: retu+=(post,) if preorder: retu+=(pre,) if subtree_size: retu+=(ss,) if topological_sort: if dag: tp_sort=post[::-1] else: tp_sort=[] retu+=(tp_sort,) if unweighted_dist: retu+=(uwd,) if weighted_dist: retu+=(wd,) if len(retu)==1: retu=retu[0] return retu def Build_Rerooting(self,s,f,f_merge,subtree=False): self.rerooting_s=s self.rerooting_f=f self.rerooting_f_merge=f_merge self.subtree=subtree if self.subtree: parents,postorder,preorder,self.rerooting_depth=self.SIV_DFS(s,parents=True,postorder=True,preorder=True,unweighted_dist=True) parents[s]=s self.rerooting_PD=Path_Doubling(self.V,parents) self.rerooting_PD.Build_Next() parents[s]=None else: parents,postorder,preorder=self.SIV_DFS(s,parents=True,postorder=True,preorder=True) self.rerooting_lower_dp=[None]*self.V for x in postorder: children=[y[0] if self.weighted else y for y in self.graph[x] if (y[0] if self.weighted else y)!=parents[x]] self.rerooting_lower_dp[x]=self.rerooting_f_merge(x,[self.rerooting_f(y,self.rerooting_lower_dp[y]) for y in children]) self.rerooting_upper_dp=[None]*self.V for x in preorder: children=[y[0] if self.weighted else y for y in self.graph[x] if (y[0] if self.weighted else y)!=parents[x]] left_accumule_f=[None]*(len(children)+1) right_accumule_f=[None]*(len(children)+1) left_accumule_f[0]=self.rerooting_f_merge(x,[]) for i in range(1,len(children)+1): left_accumule_f[i]=self.rerooting_f_merge(x,[left_accumule_f[i-1],self.rerooting_f(children[i-1],self.rerooting_lower_dp[children[i-1]])]) right_accumule_f[len(children)]=self.rerooting_f_merge(x,[]) for i in range(len(children)-1,-1,-1): right_accumule_f[i]=self.rerooting_f_merge(x,[right_accumule_f[i+1],self.rerooting_f(children[i],self.rerooting_lower_dp[children[i]])]) for i in range(len(children)): if parents[x]==None: self.rerooting_upper_dp[children[i]]=self.rerooting_f(x,self.rerooting_f_merge(x,[left_accumule_f[i],right_accumule_f[i+1]])) else: self.rerooting_upper_dp[children[i]]=self.rerooting_f(x,self.rerooting_f_merge(x,[left_accumule_f[i],right_accumule_f[i+1],self.rerooting_upper_dp[x]])) if self.subtree: self.rerooting_parents=parents def Rerooting(self,root,subtree=None): assert self.subtree or subtree==None if self.subtree and root!=subtree: if self.rerooting_depth[subtree]>=self.rerooting_depth[root]: x=self.rerooting_parents[subtree] else: x=self.rerooting_PD.Permutation_Doubling(root,self.rerooting_depth[root]-self.rerooting_depth[subtree]-1) if self.rerooting_parents[x]!=subtree: x=self.rerooting_parents[subtree] if self.rerooting_parents[subtree]==x: retu=self.rerooting_f(subtree,self.rerooting_lower_dp[subtree]) else: retu=self.rerooting_upper_dp[x] else: if root==self.rerooting_s: retu=self.rerooting_f(root,self.rerooting_lower_dp[root]) else: retu=self.rerooting_f(root,self.rerooting_f_merge(root,[self.rerooting_lower_dp[root],self.rerooting_upper_dp[root]])) return retu class Path_Doubling: def __init__(self,N,permutation,lst=None,f=None,e=None): self.N=N self.permutation=permutation self.lst=lst self.f=f self.e=e def Build_Next(self,K=None): if K==None: K=self.N self.k=K.bit_length() self.permutation_doubling=[[None]*self.N for k in range(self.k)] for n in range(self.N): self.permutation_doubling[0][n]=self.permutation[n] if self.lst!=None: self.doubling=[[None]*self.N for k in range(self.k)] for n in range(self.N): self.doubling[0][n]=self.lst[n] for k in range(1,self.k): for n in range(self.N): if self.permutation_doubling[k-1][n]!=None: self.permutation_doubling[k][n]=self.permutation_doubling[k-1][self.permutation_doubling[k-1][n]] if self.f!=None: self.doubling[k][n]=self.f(self.doubling[n][k-1],self.doubling[k-1][self.permutation_doubling[k-1][n]]) def Permutation_Doubling(self,N,K): if K<0 or 1<<self.k<=K: return None for k in range(self.k): if K>>k&1 and N!=None: N=self.permutation_doubling[k][N] return N def Doubling(self,N,K): if K<0: return self.e retu=self.e for k in range(self.k): if K>>k&1: if self.permutation_doubling[k][N]==None: return None retu=self.f(retu,self.doubling[k][N]) N=self.permutation_doubling[k][N] return N,retu def Bisect(self,x,is_ok): if not is_ok(x): return -1,None K=0 for k in range(self.k-1,-1,-1): if is_ok(self.permutation_doubling[k][x]): K|=1<<k x=self.permutation_doubling[k][x] return K,x N,M=map(int,readline().split()) A=list(map(int,readline().split())) for m in range(M): A[m]-=1 edges=[] for n in range(N-1): u,v=map(int,readline().split()) u-=1;v-=1 edges.append((u,v)) G=Graph(N,edges=edges) def f(x,merged_a): g=0 while g in merged_a: g+=1 return {g} def f_merge(x,lst): retu=set() for se in lst: retu|=se return retu G.Build_Rerooting(0,f,f_merge,subtree=True) gr=0 grundy=[list(G.Rerooting(x,x))[0] for x in range(N)] for a in A: gr^=grundy[a] if gr: seen=[False]*N for m in range(M): x=A[m] if seen[x]: continue seen[x]=True for y in G.graph[x]: if gr==grundy[x]^list(G.Rerooting(x,y))[0]: i,v=m+1,y+1 else: i,v=-1,-1 print(i,v)