結果
問題 | No.2556 Increasing Matrix |
ユーザー | maroon_kuri |
提出日時 | 2023-12-17 18:22:49 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 271 ms / 6,000 ms |
コード長 | 35,281 bytes |
コンパイル時間 | 5,242 ms |
コンパイル使用メモリ | 274,620 KB |
実行使用メモリ | 75,680 KB |
最終ジャッジ日時 | 2024-09-27 08:02:05 |
合計ジャッジ時間 | 8,658 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 53 ms
44,612 KB |
testcase_01 | AC | 54 ms
44,484 KB |
testcase_02 | AC | 54 ms
44,484 KB |
testcase_03 | AC | 53 ms
44,608 KB |
testcase_04 | AC | 53 ms
44,488 KB |
testcase_05 | AC | 52 ms
44,480 KB |
testcase_06 | AC | 54 ms
44,612 KB |
testcase_07 | AC | 53 ms
44,484 KB |
testcase_08 | AC | 53 ms
44,352 KB |
testcase_09 | AC | 54 ms
44,612 KB |
testcase_10 | AC | 53 ms
44,484 KB |
testcase_11 | AC | 53 ms
44,612 KB |
testcase_12 | AC | 53 ms
44,736 KB |
testcase_13 | AC | 55 ms
44,604 KB |
testcase_14 | AC | 57 ms
44,868 KB |
testcase_15 | AC | 58 ms
44,996 KB |
testcase_16 | AC | 57 ms
44,996 KB |
testcase_17 | AC | 63 ms
45,764 KB |
testcase_18 | AC | 156 ms
59,920 KB |
testcase_19 | AC | 264 ms
74,960 KB |
testcase_20 | AC | 265 ms
75,080 KB |
testcase_21 | AC | 154 ms
59,568 KB |
testcase_22 | AC | 63 ms
45,768 KB |
testcase_23 | AC | 271 ms
75,680 KB |
testcase_24 | AC | 269 ms
75,560 KB |
ソースコード
#ifndef LOCAL #pragma GCC optimize ("Ofast") #pragma GCC optimize ("unroll-loops") #endif #include <bits/stdc++.h> using namespace std; using ll=long long; #define int ll #define rng(i,a,b) for(int i=int(a);i<int(b);i++) #define rep(i,b) rng(i,0,b) #define gnr(i,a,b) for(int i=int(b)-1;i>=int(a);i--) #define per(i,b) gnr(i,0,b) #define pb push_back #define eb emplace_back #define a first #define b second #define bg begin() #define ed end() #define all(x) x.bg,x.ed #define si(x) int(x.size()) #ifdef LOCAL #define dmp(x) cerr<<__LINE__<<" "<<#x<<" "<<x<<endl #else #define dmp(x) void(0) #endif template<class t,class u> bool chmax(t&a,u b){if(a<b){a=b;return true;}else return false;} template<class t,class u> bool chmin(t&a,u b){if(b<a){a=b;return true;}else return false;} template<class t> using vc=vector<t>; template<class t> using vvc=vc<vc<t>>; using pi=pair<int,int>; using vi=vc<int>; template<class t,class u> ostream& operator<<(ostream& os,const pair<t,u>& p){ return os<<"{"<<p.a<<","<<p.b<<"}"; } template<class t> ostream& operator<<(ostream& os,const vc<t>& v){ os<<"{"; for(auto e:v)os<<e<<","; return os<<"}"; } #define mp make_pair #define mt make_tuple #define one(x) memset(x,-1,sizeof(x)) #define zero(x) memset(x,0,sizeof(x)) #ifdef LOCAL void dmpr(ostream&os){os<<endl;} template<class T,class... Args> void dmpr(ostream&os,const T&t,const Args&... args){ os<<t<<" "; dmpr(os,args...); } #define dmp2(...) dmpr(cerr,__LINE__,##__VA_ARGS__) #else #define dmp2(...) void(0) #endif using uint=unsigned; using ull=unsigned long long; template<class t,size_t n> ostream& operator<<(ostream&os,const array<t,n>&a){ return os<<vc<t>(all(a)); } template<int i,class T> void print_tuple(ostream&,const T&){ } template<int i,class T,class H,class ...Args> void print_tuple(ostream&os,const T&t){ if(i)os<<","; os<<get<i>(t); print_tuple<i+1,T,Args...>(os,t); } template<class ...Args> ostream& operator<<(ostream&os,const tuple<Args...>&t){ os<<"{"; print_tuple<0,tuple<Args...>,Args...>(os,t); return os<<"}"; } ll read(){ ll i; cin>>i; return i; } vi readvi(int n,int off=0){ vi v(n); rep(i,n)v[i]=read()+off; return v; } pi readpi(int off=0){ int a,b;cin>>a>>b; return pi(a+off,b+off); } template<class t> void print_single(t x,int suc=1){ cout<<x; if(suc==1) cout<<"\n"; if(suc==2) cout<<" "; } template<class t,class u> void print_single(const pair<t,u>&p,int suc=1){ print_single(p.a,2); print_single(p.b,suc); } template<class T> void print_single(const vector<T>&v,int suc=1){ rep(i,v.size()) print_single(v[i],i==int(v.size())-1?suc:2); } template<class T> void print_offset(const vector<T>&v,ll off,int suc=1){ rep(i,v.size()) print_single(v[i]+off,i==int(v.size())-1?suc:2); } template<class T,size_t N> void print_single(const array<T,N>&v,int suc=1){ rep(i,N) print_single(v[i],i==int(N)-1?suc:2); } template<class T> void print(const T&t){ print_single(t); } template<class T,class ...Args> void print(const T&t,const Args&...args){ print_single(t,2); print(args...); } string readString(){ string s; cin>>s; return s; } template<class T> T sq(const T& t){ return t*t; } void YES(bool ex=true){ cout<<"YES\n"; if(ex)exit(0); #ifdef LOCAL cout.flush(); #endif } void NO(bool ex=true){ cout<<"NO\n"; if(ex)exit(0); #ifdef LOCAL cout.flush(); #endif } void Yes(bool ex=true){ cout<<"Yes\n"; if(ex)exit(0); #ifdef LOCAL cout.flush(); #endif } void No(bool ex=true){ cout<<"No\n"; if(ex)exit(0); #ifdef LOCAL cout.flush(); #endif } //#define CAPITAL /* void yes(bool ex=true){ #ifdef CAPITAL cout<<"YES"<<"\n"; #else cout<<"Yes"<<"\n"; #endif if(ex)exit(0); #ifdef LOCAL cout.flush(); #endif } void no(bool ex=true){ #ifdef CAPITAL cout<<"NO"<<"\n"; #else cout<<"No"<<"\n"; #endif if(ex)exit(0); #ifdef LOCAL cout.flush(); #endif }*/ void possible(bool ex=true){ #ifdef CAPITAL cout<<"POSSIBLE"<<"\n"; #else cout<<"Possible"<<"\n"; #endif if(ex)exit(0); #ifdef LOCAL cout.flush(); #endif } void impossible(bool ex=true){ #ifdef CAPITAL cout<<"IMPOSSIBLE"<<"\n"; #else cout<<"Impossible"<<"\n"; #endif if(ex)exit(0); #ifdef LOCAL cout.flush(); #endif } constexpr ll ten(int n){ return n==0?1:ten(n-1)*10; } const ll infLL=LLONG_MAX/3; #ifdef int const int inf=infLL; #else const int inf=INT_MAX/2-100; #endif int topbit(signed t){ return t==0?-1:31-__builtin_clz(t); } int topbit(ll t){ return t==0?-1:63-__builtin_clzll(t); } int topbit(ull t){ return t==0?-1:63-__builtin_clzll(t); } int botbit(signed a){ return a==0?32:__builtin_ctz(a); } int botbit(ll a){ return a==0?64:__builtin_ctzll(a); } int botbit(ull a){ return a==0?64:__builtin_ctzll(a); } int popcount(signed t){ return __builtin_popcount(t); } int popcount(ll t){ return __builtin_popcountll(t); } int popcount(ull t){ return __builtin_popcountll(t); } int bitparity(ll t){ return __builtin_parityll(t); } bool ispow2(int i){ return i&&(i&-i)==i; } ll mask(int i){ return (ll(1)<<i)-1; } ull umask(int i){ return (ull(1)<<i)-1; } ll minp2(ll n){ if(n<=1)return 1; else return ll(1)<<(topbit(n-1)+1); } bool inc(int a,int b,int c){ return a<=b&&b<=c; } template<class t> void mkuni(vc<t>&v){ sort(all(v)); v.erase(unique(all(v)),v.ed); } ll rand_int(ll l, ll r) { //[l, r] //#ifdef LOCAL static mt19937_64 gen; /*#else static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count()); #endif*/ return uniform_int_distribution<ll>(l, r)(gen); } ll rand_int(ll k){ //[0,k) return rand_int(0,k-1); } template<class t> void myshuffle(vc<t>&a){ rep(i,si(a))swap(a[i],a[rand_int(0,i)]); } template<class t,class u> int lwb(const vc<t>&v,const u&a){ return lower_bound(all(v),a)-v.bg; } template<class t,class u> bool bis(const vc<t>&v,const u&a){ return binary_search(all(v),a); } vvc<int> readGraph(int n,int m){ vvc<int> g(n); rep(i,m){ int a,b; cin>>a>>b; //sc.read(a,b); a--;b--; g[a].pb(b); g[b].pb(a); } return g; } vvc<int> readTree(int n){ return readGraph(n,n-1); } template<class t> vc<t> presum(const vc<t>&a){ vc<t> s(si(a)+1); rep(i,si(a))s[i+1]=s[i]+a[i]; return s; } vc<ll> presum(const vi&a){ vc<ll> s(si(a)+1); rep(i,si(a))s[i+1]=s[i]+a[i]; return s; } //BIT で数列を管理するときに使う (CF850C) template<class t> vc<t> predif(vc<t> a){ gnr(i,1,si(a))a[i]-=a[i-1]; return a; } template<class t> vvc<ll> imos(const vvc<t>&a){ int n=si(a),m=si(a[0]); vvc<ll> b(n+1,vc<ll>(m+1)); rep(i,n)rep(j,m) b[i+1][j+1]=b[i+1][j]+b[i][j+1]-b[i][j]+a[i][j]; return b; } //verify してないや void transvvc(int&n,int&m){ swap(n,m); } template<class t,class... Args> void transvvc(int&n,int&m,vvc<t>&a,Args&...args){ assert(si(a)==n); vvc<t> b(m,vi(n)); rep(i,n){ assert(si(a[i])==m); rep(j,m)b[j][i]=a[i][j]; } a.swap(b); transvvc(n,m,args...); } //CF854E void rotvvc(int&n,int&m){ swap(n,m); } template<class t,class... Args> void rotvvc(int&n,int&m,vvc<t>&a,Args&...args){ assert(si(a)==n); vvc<t> b(m,vi(n)); rep(i,n){ assert(si(a[i])==m); rep(j,m)b[m-1-j][i]=a[i][j]; } a.swap(b); rotvvc(n,m,args...); } //ソートして i 番目が idx[i] //CF850C template<class t> vi sortidx(const vc<t>&a){ int n=si(a); vi idx(n);iota(all(idx),0); sort(all(idx),[&](int i,int j){return a[i]<a[j];}); return idx; } //vs[i]=a[idx[i]] //例えば sortidx で得た idx を使えば単にソート列になって返ってくる //CF850C template<class t> vc<t> a_idx(const vc<t>&a,const vi&idx){ int n=si(a); assert(si(idx)==n); vc<t> vs(n); rep(i,n)vs[i]=a[idx[i]]; return vs; } //CF850C vi invperm(const vi&p){ int n=si(p); vi q(n); rep(i,n)q[p[i]]=i; return q; } template<class t,class s=t> s SUM(const vc<t>&a){ return accumulate(all(a),s(0)); } template<class t> t MAX(const vc<t>&a){ return *max_element(all(a)); } template<class t> pair<t,int> MAXi(const vc<t>&a){ auto itr=max_element(all(a)); return mp(*itr,itr-a.bg); } template<class t> t MIN(const vc<t>&a){ return *min_element(all(a)); } template<class t> pair<t,int> MINi(const vc<t>&a){ auto itr=min_element(all(a)); return mp(*itr,itr-a.bg); } vi vid(int n){ vi res(n);iota(all(res),0); return res; } template<class S> void soin(S&s){ sort(all(s)); } template<class S,class F> void soin(S&s,F&&f){ sort(all(s),forward<F>(f)); } template<class S> S soout(S s){ soin(s); return s; } template<class S> void rein(S&s){ reverse(all(s)); } template<class S> S reout(S s){ rein(s); return s; } template<class t,class u> pair<t,u>&operator+=(pair<t,u>&a,pair<t,u> b){ a.a+=b.a;a.b+=b.b;return a;} template<class t,class u> pair<t,u>&operator-=(pair<t,u>&a,pair<t,u> b){ a.a-=b.a;a.b-=b.b;return a;} template<class t,class u> pair<t,u> operator+(pair<t,u> a,pair<t,u> b){return mp(a.a+b.a,a.b+b.b);} template<class t,class u> pair<t,u> operator-(pair<t,u> a,pair<t,u> b){return mp(a.a-b.a,a.b-b.b);} template<class t> t gpp(vc<t>&vs){ assert(si(vs)); t res=move(vs.back()); vs.pop_back(); return res; } template<class t,class u> void pb(vc<t>&a,const vc<u>&b){ a.insert(a.ed,all(b)); } template<class t,class...Args> vc<t> cat(vc<t> a,Args&&...b){ (pb(a,forward<Args>(b)),...); return a; } template<class t,class u> vc<t>& operator+=(vc<t>&a,u x){ for(auto&v:a)v+=x; return a; } template<class t,class u> vc<t> operator+(vc<t> a,u x){ return a+=x; } template<class t,class u> vc<t>& operator-=(vc<t>&a,u x){ for(auto&v:a)v-=x; return a; } template<class t,class u> vc<t>& operator-(vc<t> a,u x){ return a-=x; } template<class t,class u> void remval(vc<t>&a,const u&v){ a.erase(remove(all(a),v),a.ed); } template<class t,class u> void fila(vc<t>&vs,const u&a){ fill(all(vs),a); } template<class t,class u> int findid(const vc<t>&vs,const u&a){ auto itr=find(all(vs),a); if(itr==vs.ed)return -1; else return itr-vs.bg; } template<class t> void rtt(vc<t>&vs,int i){ rotate(vs.bg,vs.bg+i,vs.ed); } //mint107 は verify してねえ //#define DYNAMIC_MOD struct modinfo{uint mod,root; #ifdef DYNAMIC_MOD constexpr modinfo(uint m,uint r):mod(m),root(r),im(0){set_mod(m);} ull im; constexpr void set_mod(uint m){ mod=m; im=ull(-1)/m+1; } uint product(uint a,uint b)const{ ull z=ull(a)*b; uint x=((unsigned __int128)z*im)>>64; uint v=uint(z)-x*mod; return v<mod?v:v+mod; } #endif }; template<modinfo const&ref> struct modular{ static constexpr uint const &mod=ref.mod; static modular root(){return modular(ref.root);} uint v; //modular(initializer_list<uint>ls):v(*ls.bg){} modular(ll vv=0){s(vv%mod+mod);} modular& s(uint vv){ v=vv<mod?vv:vv-mod; return *this; } modular operator-()const{return modular()-*this;} modular& operator+=(const modular&rhs){return s(v+rhs.v);} modular&operator-=(const modular&rhs){return s(v+mod-rhs.v);} modular&operator*=(const modular&rhs){ #ifndef DYNAMIC_MOD v=ull(v)*rhs.v%mod; #else v=ref.product(v,rhs.v); #endif return *this; } modular&operator/=(const modular&rhs){return *this*=rhs.inv();} modular operator+(const modular&rhs)const{return modular(*this)+=rhs;} modular operator-(const modular&rhs)const{return modular(*this)-=rhs;} modular operator*(const modular&rhs)const{return modular(*this)*=rhs;} modular operator/(const modular&rhs)const{return modular(*this)/=rhs;} modular pow(ll n)const{ if(n<0)return inv().pow(-n); modular res(1),x(*this); while(n){ if(n&1)res*=x; x*=x; n>>=1; } return res; } modular inv()const{return pow(mod-2);} /*modular inv()const{ int x,y; int g=extgcd<ll>(v,mod,x,y); assert(g==1); if(x<0)x+=mod; return modular(x); }*/ friend modular operator+(ll x,const modular&y){ return modular(x)+y; } friend modular operator-(ll x,const modular&y){ return modular(x)-y; } friend modular operator*(ll x,const modular&y){ return modular(x)*y; } friend modular operator/(ll x,const modular&y){ return modular(x)/y; } friend ostream& operator<<(ostream&os,const modular&m){ return os<<m.v; } friend istream& operator>>(istream&is,modular&m){ ll x;is>>x; m=modular(x); return is; } bool operator<(const modular&r)const{return v<r.v;} bool operator==(const modular&r)const{return v==r.v;} bool operator!=(const modular&r)const{return v!=r.v;} explicit operator bool()const{ return v; } }; #define USE_GOOD_MOD //size of input must be a power of 2 //output of forward fmt is bit-reversed //output elements are in the range [0,mod*4) //input of inverse fmt should be bit-reversed template<class mint> void inplace_fmt(const int n,mint*const f,bool inv){ static constexpr uint mod=mint::mod; static constexpr uint mod2=mod*2; static constexpr int L=30; static mint g[L],ig[L],p2[L]; if(g[0].v==0){ rep(i,L){ mint w=-mint::root().pow(((mod-1)>>(i+2))*3); g[i]=w; ig[i]=w.inv(); p2[i]=mint(1<<i).inv(); } } if(!inv){ int b=n; if(b>>=1){//input:[0,mod) rep(i,b){ uint x=f[i+b].v; f[i+b].v=f[i].v+mod-x; f[i].v+=x; } } if(b>>=1){//input:[0,mod*2) mint p=1; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b){ uint x=(f[j+b]*p).v; f[j+b].v=f[j].v+mod-x; f[j].v+=x; } p*=g[__builtin_ctz(++k)]; } } while(b){ if(b>>=1){//input:[0,mod*3) mint p=1; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b){ uint x=(f[j+b]*p).v; f[j+b].v=f[j].v+mod-x; f[j].v+=x; } p*=g[__builtin_ctz(++k)]; } } if(b>>=1){//input:[0,mod*4) mint p=1; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b){ uint x=(f[j+b]*p).v; f[j].v=(f[j].v<mod2?f[j].v:f[j].v-mod2); f[j+b].v=f[j].v+mod-x; f[j].v+=x; } p*=g[__builtin_ctz(++k)]; } } } }else{ int b=1; if(b<n/2){//input:[0,mod) mint p=1; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b){ ull x=f[j].v+mod-f[j+b].v; f[j].v+=f[j+b].v; f[j+b].v=x*p.v%mod; } p*=ig[__builtin_ctz(++k)]; } b<<=1; } for(;b<n/2;b<<=1){ mint p=1; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b/2){//input:[0,mod*2) ull x=f[j].v+mod2-f[j+b].v; f[j].v+=f[j+b].v; f[j].v=(f[j].v)<mod2?f[j].v:f[j].v-mod2; f[j+b].v=x*p.v%mod; } rng(j,i+b/2,i+b){//input:[0,mod) ull x=f[j].v+mod-f[j+b].v; f[j].v+=f[j+b].v; f[j+b].v=x*p.v%mod; } p*=ig[__builtin_ctz(++k)]; } } if(b<n){//input:[0,mod*2) rep(i,b){ uint x=f[i+b].v; f[i+b].v=f[i].v+mod2-x; f[i].v+=x; } } mint z=p2[__lg(n)]; rep(i,n)f[i]*=z; } } template<class mint> void inplace_fmt(vector<mint>&f,bool inv){ inplace_fmt(si(f),f.data(),inv); } //size of input must be a power of 2 //output elements are in the range [0,mod*4) template<class mint> void half_fmt(const int n,mint*const f){ static constexpr uint mod=mint::mod; static constexpr uint mod2=mod*2; static const int L=30; static mint g[L],h[L]; if(g[0].v==0){ rep(i,L){ g[i]=-mint::root().pow(((mod-1)>>(i+2))*3); h[i]=mint::root().pow((mod-1)>>(i+2)); } } int b=n; int lv=0; if(b>>=1){//input:[0,mod) mint p=h[lv++]; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b){ uint x=(f[j+b]*p).v; f[j+b].v=f[j].v+mod-x; f[j].v+=x; } p*=g[__builtin_ctz(++k)]; } } if(b>>=1){//input:[0,mod*2) mint p=h[lv++]; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b){ uint x=(f[j+b]*p).v; f[j+b].v=f[j].v+mod-x; f[j].v+=x; } p*=g[__builtin_ctz(++k)]; } } while(b){ if(b>>=1){//input:[0,mod*3) mint p=h[lv++]; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b){ uint x=(f[j+b]*p).v; f[j+b].v=f[j].v+mod-x; f[j].v+=x; } p*=g[__builtin_ctz(++k)]; } } if(b>>=1){//input:[0,mod*4) mint p=h[lv++]; for(int i=0,k=0;i<n;i+=b*2){ rng(j,i,i+b){ uint x=(f[j+b]*p).v; f[j].v=(f[j].v<mod2?f[j].v:f[j].v-mod2); f[j+b].v=f[j].v+mod-x; f[j].v+=x; } p*=g[__builtin_ctz(++k)]; } } } } template<class mint> void half_fmt(vector<mint>&f){ half_fmt(si(f),f.data()); } #ifdef USE_GOOD_MOD template<class mint> vc<mint> multiply(vc<mint> x,const vc<mint>&y,bool same=false){ int n=si(x)+si(y)-1; int s=1; while(s<n)s*=2; x.resize(s);inplace_fmt(x,false); if(!same){ static vc<mint> z; z.clear();z.resize(s); rep(i,si(y))z[i]=y[i]; inplace_fmt(z,false); rep(i,s)x[i]*=z[i]; }else{ rep(i,s)x[i]*=x[i]; } inplace_fmt(x,true);x.resize(n); return x; } template<class mint> vc<mint> multiply_givenlength(vc<mint> x,const vc<mint>&y,bool same=false){ int s=si(x); assert(ispow2(s)); assert(si(y)); x.resize(s);inplace_fmt(x,false); if(!same){ static vc<mint> z; z.clear();z.resize(s); rep(i,si(y))z[i]=y[i]; inplace_fmt(z,false); rep(i,s)x[i]*=z[i]; }else{ rep(i,s)x[i]*=x[i]; } inplace_fmt(x,true); return x; } #else //59501818244292734739283969-1=5.95*10^25 までの値を正しく計算 //最終的な列の大きさが 2^24 までなら動く //最終的な列の大きさが 2^20 以下のときは,下の 3 つの素数を使ったほうが速い(は?) //VERIFY: yosupo //Yukicoder No980 (same=true) namespace arbitrary_convolution{ constexpr modinfo base0{167772161,3};//2^25 * 5 + 1 constexpr modinfo base1{469762049,3};//2^26 * 7 + 1 constexpr modinfo base2{754974721,11};//2^24 * 45 + 1 //extern constexpr modinfo base0{1045430273,3};//2^20 * 997 + 1 //extern constexpr modinfo base1{1051721729,6};//2^20 * 1003 + 1 //extern constexpr modinfo base2{1053818881,7};//2^20 * 1005 + 1 using mint0=modular<base0>; using mint1=modular<base1>; using mint2=modular<base2>; template<class t,class mint> vc<t> sub(const vc<mint>&x,const vc<mint>&y,bool same=false){ int n=si(x)+si(y)-1; int s=1; while(s<n)s*=2; vc<t> z(s);rep(i,si(x))z[i]=x[i].v; inplace_fmt(z,false); if(!same){ vc<t> w(s);rep(i,si(y))w[i]=y[i].v; inplace_fmt(w,false); rep(i,s)z[i]*=w[i]; }else{ rep(i,s)z[i]*=z[i]; } inplace_fmt(z,true);z.resize(n); return z; } template<class mint> vc<mint> multiply(const vc<mint>&x,const vc<mint>&y,bool same=false){ auto d0=sub<mint0>(x,y,same); auto d1=sub<mint1>(x,y,same); auto d2=sub<mint2>(x,y,same); int n=si(d0); vc<mint> res(n); static const mint1 r01=mint1(mint0::mod).inv(); static const mint2 r02=mint2(mint0::mod).inv(); static const mint2 r12=mint2(mint1::mod).inv(); static const mint2 r02r12=r02*r12; static const mint w1=mint(mint0::mod); static const mint w2=w1*mint(mint1::mod); rep(i,n){ ull a=d0[i].v; ull b=(d1[i].v+mint1::mod-a)*r01.v%mint1::mod; ull c=((d2[i].v+mint2::mod-a)*r02r12.v+(mint2::mod-b)*r12.v)%mint2::mod; res[i].v=(a+b*w1.v+c*w2.v)%mint::mod; } return res; } template<class t,class mint> vc<t>&sub_givenlength(const vc<mint>&x,const vc<mint>&y,bool same=false){ int s=si(x); assert(ispow2(s)); assert(si(y)==s); static vc<t> z; z.clear();z.resize(s); rep(i,si(x))z[i]=x[i].v; inplace_fmt(z,false); if(!same){ static vc<t> w; w.clear();w.resize(s); rep(i,si(y))w[i]=y[i].v; inplace_fmt(w,false); rep(i,s)z[i]*=w[i]; }else{ rep(i,s)z[i]*=z[i]; } inplace_fmt(z,true); return z; } template<class mint> vc<mint> multiply_givenlength(vc<mint> x,const vc<mint>&y,bool same=false){ auto&d0=sub_givenlength<mint0>(x,y,same); auto&d1=sub_givenlength<mint1>(x,y,same); auto&d2=sub_givenlength<mint2>(x,y,same); int n=si(d0); x.resize(n); static const mint1 r01=mint1(mint0::mod).inv(); static const mint2 r02=mint2(mint0::mod).inv(); static const mint2 r12=mint2(mint1::mod).inv(); static const mint2 r02r12=r02*r12; static const mint w1=mint(mint0::mod); static const mint w2=w1*mint(mint1::mod); rep(i,n){ ull a=d0[i].v; ull b=(d1[i].v+mint1::mod-a)*r01.v%mint1::mod; ull c=((d2[i].v+mint2::mod-a)*r02r12.v+(mint2::mod-b)*r12.v)%mint2::mod; x[i].v=(a+b*w1.v+c*w2.v)%mint::mod; } return x; } } using arbitrary_convolution::multiply; using arbitrary_convolution::multiply_givenlength; #endif //UTPC2021 C namespace integer_convolution{ extern constexpr modinfo base0{1045430273,3};//2^20 * 997 + 1 extern constexpr modinfo base1{1051721729,6};//2^20 * 1003 + 1 //extern constexpr modinfo base0{469762049,3};//2^26 * 7 + 1 //extern constexpr modinfo base1{754974721,11};//2^24 * 45 + 1 using mint0=modular<base0>; using mint1=modular<base1>; template<class t> vc<t> sub(const vi&x,const vi&y,bool same=false){ int n=si(x)+si(y)-1; int s=1; while(s<n)s*=2; vc<t> z(s);rep(i,si(x))z[i]=x[i]; inplace_fmt(z,false); if(!same){ vc<t> w(s);rep(i,si(y))w[i]=y[i]; inplace_fmt(w,false); rep(i,s)z[i]*=w[i]; }else{ rep(i,s)z[i]*=z[i]; } inplace_fmt(z,true);z.resize(n); return z; } vi multiply(const vi&x,const vi&y,bool same=false){ auto d0=sub<mint0>(x,y,same); auto d1=sub<mint1>(x,y,same); const mint1 r=mint1(mint0::mod).inv(); const ll v=ll(mint0::mod)*mint1::mod; int n=si(d0); vi res(n); rep(i,n){ res[i]=d0[i].v+(r*(d1[i]-d0[i].v)).v*(ull)mint0::mod; if(res[i]>v/2)res[i]-=v; } return res; } } //最大で 1<<mx のサイズの fft が登場! template<class mint> vc<mint> large_convolution(const vc<mint>&a,const vc<mint>&b,int mx){ int n=si(a),m=si(b); vc<mint> c(n+m-1); int len=1<<(mx-1); for(int i=0;i<n;i+=len){ for(int j=0;j<n;j+=len){ int x=min(len,n-i),y=min(len,m-j); auto d=multiply(vc<mint>(a.bg+i,a.bg+i+x),vc<mint>(b.bg+j,b.bg+j+y)); rep(k,si(d)) c[i+j+k]+=d[k]; } } return c; } //input A: N 次,B ?,M //output D: M 次多項式 //C を M 次多項式として //[x^N] A*B*C = [x^M] D*C //となるような D を返す //CF796F template<class mint> vc<mint> transpose_advance(const vc<mint>&a,const vc<mint>&b,int m){ int n=si(a)-1; auto d=multiply(a,b); vc<mint> res(m+1); if(n>=m){ rep(i,m+1)res[i]=d[i+n-m]; }else{ rng(i,m-n,m+1)res[i]=d[i+n-m]; } return res; } //Yukicoder 2166 template<class mint> void chmult(vc<mint>&x,const vc<mint>&y,int s){ x=multiply(move(x),y); x.resize(s); } //Poly というのは常にサイズ 1 以上であることにしよう //low のあたりをかならずサイズ s のものを返すようにいじった //その影響で何かが起きているかも知れないし,起きていないかも知れない template<class mint> struct Poly:public vc<mint>{ /*Poly(){} //Poly(const vc<mint>&val):vc<mint>(val){} //Poly(vc<mint>&&val):vc<mint>(val){} explicit Poly(int n):vc<mint>(n){} explicit Poly(int n,mint v):vc<mint>(n,v){} //Poly(initializer_list<mint>init):vc<mint>(all(init)){} template<class...Args> Poly(Args&&...args):vc<mint>(forward<Args>(args)...){}*/ using vc<mint>::vector; using vc<mint>::operator=; //Poly(const Poly<mint>&rhs):vc<mint>((vc<mint>)rhs){} //Poly(Poly<mint>&&rhs):vc<mint>(forward<vc<mint>>(rhs)){} int size()const{ return vc<mint>::size(); } void ups(int s){ if(size()<s)this->resize(s,0); } Poly low(int s)const{ assert(s); Poly res(s); rep(i,min(s,size()))res[i]=(*this)[i]; return res; } Poly rev()const{ auto r=*this; reverse(all(r)); return r; } Poly operator>>(int x)const{ assert(x<size()); Poly res(size()-x); rep(i,size()-x)res[i]=(*this)[i+x]; return res; } Poly operator<<(int x)const{ Poly res(size()+x); rep(i,size())res[i+x]=(*this)[i]; return res; } mint freq(int i)const{ return i<size()?(*this)[i]:0; } Poly operator-()const{ Poly res=*this; for(auto&v:res)v=-v; return res; } Poly& operator+=(const Poly&r){ ups(r.size()); rep(i,r.size()) (*this)[i]+=r[i]; return *this; } template<class T> Poly& operator+=(T t){ (*this)[0]+=t; return *this; } Poly& operator-=(const Poly&r){ ups(r.size()); rep(i,r.size()) (*this)[i]-=r[i]; return *this; } template<class T> Poly& operator-=(T t){ (*this)[0]-=t; return *this; } template<class T> Poly& operator*=(T t){ for(auto&v:*this) v*=t; return *this; } Poly& operator*=(const Poly&r){ *this=multiply(*this,r);; return *this; } Poly square()const{ return multiply(*this,*this,true); } #ifndef USE_GOOD_MOD Poly inv(int s)const{ Poly r{mint(1)/(*this)[0]}; for(int n=1;n<s;n*=2) r=r*2-(r.square()*low(2*n)).low(2*n); r.resize(s); return r; } #else //source: Section 4 of "Removing redundancy from high-precision Newton iteration" // 5/3 Poly inv(int s)const{ Poly r(s); r[0]=mint(1)/(*this)[0]; for(int n=1;n<s;n*=2){ vc<mint> f=low(2*n); f.resize(2*n); inplace_fmt(f,false); vc<mint> g=r.low(2*n); g.resize(2*n); inplace_fmt(g,false); rep(i,2*n)f[i]*=g[i]; inplace_fmt(f,true); rep(i,n)f[i]=0; inplace_fmt(f,false); rep(i,2*n)f[i]*=g[i]; inplace_fmt(f,true); rng(i,n,min(2*n,s))r[i]=-f[i]; } return r; } #endif template<class T> Poly& operator/=(T t){ return *this*=mint(1)/mint(t); } Poly quotient(const Poly&r,const Poly&rri)const{ int m=r.size(); assert(r[m-1].v); int n=size(); int s=n-m+1; if(s<=0) return {0}; return (rev().low(s)*rri.low(s)).low(s).rev(); } Poly& operator/=(const Poly&r){ return *this=quotient(r,r.rev().inv(max(size()-r.size(),int(0))+1)); } Poly& operator%=(const Poly&r){ *this-=*this/r*r; return *this=low(r.size()-1); } Poly operator+(const Poly&r)const{return Poly(*this)+=r;} template<class T> Poly operator+(T t)const{return Poly(*this)+=t;} template<class T> friend Poly operator+(T t,Poly r){ r[0]+=t; return r; } Poly operator-(const Poly&r)const{return Poly(*this)-=r;} template<class T> Poly operator-(T t)const{return Poly(*this)-=t;} template<class T> friend Poly operator-(T t,Poly r){ for(auto&v:r)v=-v; r[0]+=t; return r; } template<class T> Poly operator*(T t)const{return Poly(*this)*=t;} Poly operator*(const Poly&r)const{return Poly(*this)*=r;} template<class T> Poly operator/(T t)const{return Poly(*this)/=t;} Poly operator/(const Poly&r)const{return Poly(*this)/=r;} Poly operator%(const Poly&r)const{return Poly(*this)%=r;} Poly dif()const{ assert(size()); if(size()==1){ return {0}; }else{ Poly r(size()-1); rep(i,r.size()) r[i]=(*this)[i+1]*(i+1); return r; } } Poly inte(const mint invs[])const{ Poly r(size()+1,0); rep(i,size()) r[i+1]=(*this)[i]*invs[i+1]; return r; } //VERIFY: yosupo //opencupXIII GP of Peterhof H Poly log(int s,const mint invs[])const{ assert((*this)[0]==1); if(s==1)return {0}; return (low(s).dif()*inv(s-1)).low(s-1).inte(invs); } //Petrozavodsk 2019w mintay1 G //yosupo judge //UOJ Round23 C Poly exp(int s,const mint invs[])const{ assert((*this)[0]==mint(0)); Poly f{1},g{1}; for(int n=1;;n*=2){ if(n>=s)break; g=g*2-(g.square()*f).low(n); //if(n>=s)break; Poly q=low(n).dif(); q=q+g*(f.dif()-f*q).low(2*n-1); f=f+(f*(low(2*n)-q.inte(invs))).low(2*n); } return f.low(s); } //exp(x),exp(-x) のペアを返す //UOJ Round23 C pair<Poly,Poly> exp2(int s,const mint invs[])const{ assert((*this)[0]==mint(0)); Poly f{1},g{1}; for(int n=1;;n*=2){ //if(n>=s)break; g=g*2-(g.square()*f).low(n); if(n>=s)break; Poly q=low(n).dif(); q=q+g*(f.dif()-f*q).low(2*n-1); f=f+(f*(low(2*n)-q.inte(invs))).low(2*n); } return make_pair(f.low(s),g.low(s)); } #ifndef USE_GOOD_MOD //CF250 E Poly sqrt(int s)const{ assert((*this)[0]==1); static const mint half=mint(1)/mint(2); Poly r{1}; for(int n=1;n<s;n*=2) r=(r+(r.inv(n*2)*low(n*2)).low(n*2))*half; return r.low(s); } #else //11/6 //VERIFY: yosupo Poly sqrt(int s)const{ assert((*this)[0]==1); static const mint half=mint(1)/mint(2); vc<mint> f{1},g{1},z{1}; for(int n=1;n<s;n*=2){ rep(i,n)z[i]*=z[i]; inplace_fmt(z,true); vc<mint> delta(2*n); rep(i,n)delta[n+i]=z[i]-freq(i)-freq(n+i); inplace_fmt(delta,false); vc<mint> gbuf(2*n); rep(i,n)gbuf[i]=g[i]; inplace_fmt(gbuf,false); rep(i,2*n)delta[i]*=gbuf[i]; inplace_fmt(delta,true); f.resize(2*n); rng(i,n,2*n)f[i]=-half*delta[i]; if(2*n>=s)break; z=f; inplace_fmt(z,false); vc<mint> eps=gbuf; rep(i,2*n)eps[i]*=z[i]; inplace_fmt(eps,true); rep(i,n)eps[i]=0; inplace_fmt(eps,false); rep(i,2*n)eps[i]*=gbuf[i]; inplace_fmt(eps,true); g.resize(2*n); rng(i,n,2*n)g[i]=-eps[i]; } f.resize(s); return f; } #endif pair<Poly,Poly> divide(const Poly&r,const Poly&rri)const{ Poly a=quotient(r,rri); Poly b=*this-a*r; return make_pair(a,b.low(r.size()-1)); } //Yukicoder No.215 Poly pow_mod(int n,const Poly&r)const{ Poly rri=r.rev().inv(r.size()); Poly cur{1},x=*this%r; while(n){ if(n%2) cur=(cur*x).divide(r,rri).b; x=(x*x).divide(r,rri).b; n/=2; } return cur; } int lowzero()const{ rep(i,size())if((*this)[i]!=0)return i; return size(); } //VERIFY: yosupo //UOJ Round23 C (z=0,p<0) //Multiuni2023-4-B Poly pow(int s,int p,const mint invs[])const{ assert(s>0); if(p==0){ Poly res(s,0); res[0]=1; return res; } int n=size(),z=0; for(;z<n&&(*this)[z]==0;z++); assert(z==0||p>0); if(z*p>=s)return Poly(s,0); mint c=(*this)[z],cinv=c.inv(); mint d=c.pow(p); int t=s-z*p; Poly x(t); rng(i,z,min(z+t,n))x[i-z]=(*this)[i]*cinv; x=x.log(t,invs); rep(i,t)x[i]*=p; x=x.exp(t,invs); rep(i,t)x[i]*=d; Poly y(s); rep(i,t)y[z*p+i]=x[i]; return y; } mint eval(mint x)const{ mint r=0,w=1; for(auto v:*this){ r+=w*v; w*=x; } return r; } }; //CF641 F2 //f*x^(-a) template<class mint> struct Laurent{ Poly<mint> f; int a; Laurent(const Poly<mint>&num,const Poly<mint>&den,int s){ a=den.lowzero(); assert(a<si(den)); f=(num*(den>>a).inv(s)).low(s); } Laurent(const Poly<mint>&ff,int aa):f(ff),a(aa){} Laurent dif()const{ return Laurent(f*(-a)+(f.dif()<<1),a+1); } mint&operator[](int i){ assert(inc(0,i+a,si(f)-1)); return f[i+a]; } }; template<class mint> ll m2l(mint a){ return a.v<mint::mod/2?a.v:ll(a.v)-ll(mint::mod); } template<class mint> void showpoly(const Poly<mint>&a){ vi tmp(si(a)); rep(i,si(a)){ tmp[i]=m2l(a[i]); } cerr<<tmp<<endl; } //source: Tellegen’s Principle into Practice //Yukicoder No.1145 //top には,(x-a[i]) の積が入っている(a がサイズ s に拡張されていることに注意) //なので例えば (1-a[i]x) の積が欲しい場合は, // Poly<mint> f=s.top; // Poly<mint> g(n+1); // rep(i,n+1)g[i]=f[si(f)-1-i]; template<class mint> struct subproduct_tree{ using poly=Poly<mint>; int raws,s,h; mint*buf; vc<mint*>f; vi len; poly top; void inner_product(const int n,const mint*a,const mint*b,mint*c){ rep(i,n)c[i]=a[i]*b[i]; } //first n elements are fft-ed //last n elements are raw data mod x^n-1 //the coefficient of x^n is v //convert the whole array into size-2n fft-ed array void doubling_fmt(const int n,mint*a,const mint v){ a[n]-=v*2; half_fmt(n,a+n); } subproduct_tree(const vc<mint>&a){ raws=si(a); s=1;while(s<si(a))s*=2; h=__lg(s)+1; buf=new mint[s*h*2]; f.resize(s*2); len.resize(s*2); { mint*head=buf; rng(i,1,s*2){ len[i]=s>>__lg(i); f[i]=head; head+=len[i]*2; } } rep(i,s){ mint w=i<si(a)?a[i]:0; f[s+i][0]=-w+1; f[s+i][1]=-w-1; } if(s==1)f[1][1]=f[1][0]; gnr(i,1,s){ inner_product(len[i],f[i*2],f[i*2+1],f[i]); copy(f[i],f[i]+len[i],f[i]+len[i]); inplace_fmt(len[i],f[i]+len[i],true); if(i>1)doubling_fmt(len[i],f[i],1); } top.resize(s+1); rep(i,s)top[i]=f[1][s+i]; top[0]-=1; top[s]=1; } ~subproduct_tree(){ delete[] buf; } //VERIFY: yosupo vc<mint> multieval(const poly&b){ mint*buf2=new mint[s*2]; vc<mint*> c(s*2); { mint*head=buf2; rng(i,1,s*2){ if((i&(i-1))==0&&__lg(i)%2==0)head=buf2; c[i]=head; head+=len[i]; } } { poly tmp=top.rev().inv(si(b)).rev()*b; rep(i,s)c[1][i]=i<si(b)?tmp[si(b)-1+i]:0; } vc<mint> tmp(s); rng(i,1,s){ inplace_fmt(len[i],c[i],false); rep(k,2){ tmp.resize(len[i]); rep(j,len[i])tmp[j]=f[i*2+(k^1)][j]*c[i][j]; inplace_fmt(tmp,true); rep(j,len[i]/2)c[i*2+k][j]=tmp[len[i]/2+j]; } } vc<mint> ans(raws); rep(i,raws)ans[i]=c[s+i][0]; delete[] buf2; return ans; } poly interpolate(const vc<mint>&val){ mint*buf2=new mint[s*2*2]; vc<mint*> c(s*2); { mint*head=buf2; rng(i,1,s*2){ if((i&(i-1))==0&&__lg(i)%2==0)head=buf2; c[i]=head; head+=len[i]*2; } } { vc<mint> z=multieval(poly(top.bg+(s-si(val)),top.ed).dif()); rep(i,s){ mint w=i<si(val)?val[i]/z[i]:0; c[s+i][0]=c[s+i][1]=w; } } gnr(i,1,s){ rep(j,len[i]) c[i][j]=c[i*2][j]*f[i*2+1][j]+c[i*2+1][j]*f[i*2][j]; copy(c[i],c[i]+len[i],c[i]+len[i]); inplace_fmt(len[i],c[i]+len[i],true); if(i>1)doubling_fmt(len[i],c[i],0); } poly res(c[1]+s+(s-si(val)),c[1]+s*2); delete[] buf2; return res; } //res[i]=prod_{j!=i} (a[i]-a[j]) //Yukicoder 2556 vc<mint> product_of_difference(){ return multieval(poly(top.bg+(s-raws),top.ed).dif()); } }; #ifndef DYNAMIC_MOD extern constexpr modinfo base{998244353,3}; //extern constexpr modinfo base{1000000007,0}; //extern constexpr modinfo base{2147483579,0};//2^31 未満の最大の安全素数 //modinfo base{1,0}; #ifdef USE_GOOD_MOD static_assert(base.mod==998244353); #endif #else modinfo base(1,0); extern constexpr modinfo base107(1000000007,0); using mint107=modular<base107>; #endif using mint=modular<base>; mint parity(int i){ return i%2==0?1:-1; } #ifdef LOCAL const int vmax=10010; #else const int vmax=(1<<21)+10; #endif mint fact[vmax],finv[vmax],invs[vmax]; void initfact(){ fact[0]=1; rng(i,1,vmax){ fact[i]=fact[i-1]*i; } finv[vmax-1]=fact[vmax-1].inv(); for(int i=vmax-2;i>=0;i--){ finv[i]=finv[i+1]*(i+1); } for(int i=vmax-1;i>=1;i--){ invs[i]=finv[i]*fact[i-1]; } } mint choose(int n,int k){ return inc(0,k,n)?fact[n]*finv[n-k]*finv[k]:0; } mint binom(int a,int b){ return 0<=a&&0<=b?fact[a+b]*finv[a]*finv[b]:0; } mint catalan(int n){ return binom(n,n)-(n-1>=0?binom(n-1,n+1):0); } //対角線を超えず (x,y) に至る方法の数 mint catalan(int x,int y){ assert(y<=x); return binom(x,y)-binom(x+1,y-1); } //y=x+c を超えず (x,y) に至る方法の数 mint catalan(int x,int y,int c){ assert(y<=x+c); return binom(x,y)-binom(x+c+1,y-c-1); } /* const int vmax=610; mint fact[vmax+1],binbuf[vmax+1][vmax+1]; mint choose(int n,int k){ return 0<=k&&k<=n?binbuf[n-k][k]:0; } mint binom(int a,int b){ return 0<=a&&0<=b?binbuf[a][b]:0; } void initfact(int n){ fact[0]=1; rep(i,n)fact[i+1]=fact[i]*(i+1); rep(i,n+1)rep(j,n+1){ if(i==0&&j==0){ binbuf[i][j]=1; }else{ binbuf[i][j]=0; if(i)binbuf[i][j]+=binbuf[i-1][j]; if(j)binbuf[i][j]+=binbuf[i][j-1]; } } } */ mint p2[vmax],p2inv[vmax]; void initp2(){ p2[0]=1; rep(i,vmax-1)p2[i+1]=p2[i]*2; p2inv[vmax-1]=p2[vmax-1].inv(); per(i,vmax-1)p2inv[i]=p2inv[i+1]*2; } bool dbg=false; void slv(){ int n;cin>>n; vc<mint> a(n); rep(i,n){ cin>>a[i]; a[i]+=i; } auto z=subproduct_tree(a).product_of_difference(); mint ans=1; for(auto v:z)ans*=v; ans*=parity(n*(n-1)/2); rng(i,1,n)ans*=sq(finv[i]); print(ans); } signed main(){ cin.tie(0); ios::sync_with_stdio(0); cout<<fixed<<setprecision(20); initfact(); if(dbg){ while(1)slv(); }else{ //int t;cin>>t;rep(_,t) slv(); } }