結果
問題 | No.2589 Prepare Integers |
ユーザー | 👑 p-adic |
提出日時 | 2023-12-17 19:39:48 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,744 bytes |
コンパイル時間 | 237 ms |
コンパイル使用メモリ | 82,372 KB |
実行使用メモリ | 79,776 KB |
最終ジャッジ日時 | 2024-09-27 08:02:45 |
合計ジャッジ時間 | 7,693 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 43 ms
59,688 KB |
testcase_01 | AC | 44 ms
58,804 KB |
testcase_02 | AC | 42 ms
59,660 KB |
testcase_03 | AC | 45 ms
58,596 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | AC | 243 ms
79,504 KB |
testcase_10 | AC | 260 ms
79,184 KB |
testcase_11 | AC | 248 ms
78,288 KB |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | AC | 247 ms
79,620 KB |
testcase_25 | AC | 240 ms
79,212 KB |
testcase_26 | AC | 245 ms
79,044 KB |
testcase_27 | AC | 190 ms
78,092 KB |
ソースコード
R=range x=0 def Expand( X , digit ): global x answer=[] for d in R(digit): if x==0:break if X[d]!=0: answer+=[x%X[d]] x//=X[d] else:answer+=[0] return answer u0=u1=v0=v1=0 def PartitionOfUnity( b_0 , b_1 , K ): global u0 , u1 , v0 , v1 a=[[1,0],[0,1]] b=[b_0,b_1] i_0=b_0<b_1 i_1=1-i_0 while b[i_1]!=0: q=b[i_0]//b[i_1] a[i_0][i_0]=(a[i_0][i_0]-q*a[i_1][i_0])%K a[i_0][i_1]=(a[i_0][i_1]-q*a[i_1][i_1])%K b[i_0]-=q*b[i_1] i_0,i_1=i_1,i_0 u0,u1,v0,v1=a[i_0][0],a[i_0][1],a[i_1][0],a[i_1][1] return b[i_0] def SetGcd( gcd , gcd_inv , exp , K , euler_minus ): L=len(exp)-1 if gcd_inv[L]==0: gcd[L][L]=PartitionOfUnity(exp[L],K,1) gcd_inv[L]=K//gcd[L][L] r=exp[L]//gcd[L][L] r_inv=pow(r,euler_minus,K) for d in R(L):gcd[L][d]=r_inv*exp[d]%K return gcd[L][L]=PartitionOfUnity(gcd[L][L],exp[L],K) gcd_inv[L]=K//gcd[L][L] exp.pop() for d in R(L): temp0 = ( gcd[L][d] * u0 + exp[d] * u1 ) % K temp1 = ( gcd[L][d] * v0 + exp[d] * v1 ) % K gcd[L][d] = temp0 exp[d] = temp1 while len(exp) and exp[-1] == 0:exp.pop() if len(exp):SetGcd(gcd,gcd_inv,exp,K,euler_minus) O=print J=lambda:map(int,input().split()) K,Q=J() digit = 0 K_vec=[] power = K*10**18 while power > 0: power //= K digit+=1 K_vec+=[K] euler_minus=1 K_copy = K for p in R(2,31623): if K_copy%p == 0: euler_minus *= p-1 K_copy//=p while K_copy%p == 0: euler_minus *= p K_copy//=p if K_copy>1:euler_minus*=K_copy-1 euler_minus-=1 gcd=[[0]*(d+1)for d in R(digit)] gcd_inv=[0]*digit for q in R(Q): type,x=J() if type==1: exp=Expand(K_vec,digit) SetGcd( gcd , gcd_inv , exp , K , euler_minus ) elif type == 2: if x == 1: O(0) continue x-=1 exp = Expand( gcd_inv , digit ) if x > 0: O( -1 ) continue L=len(exp)-1 coef=[0]*( L + 1 ) for l in R(L,-1,-1): if gcd[l][l] != 0: exp[l] = (exp[l] - coef[l] // gcd[l][l])%K for d in R(l+1): coef[d] = ( coef[d] + exp[l] * gcd[l][d] ) % K answer = 0 power = 1 for d in R(L+1): answer += coef[d] * power power *= K O( answer ) elif type == 3: if x == 0: O( 1 ) continue exp = Expand( K_vec , digit ) L = len(exp) - 1 coef=[0]*( L + 1 ) lb=[0]*( L + 1 ) for l in R(L,-1,-1): if gcd[l][l] == 0: if exp[l] > lb[l]: coef[l]+=1 break else: r = exp[l] - lb[l] % gcd[l][l] if r < 0: coef[l+1]-=1 break coef[l] = r // gcd[l][l] if r % gcd[l][l] != 0: coef[l]+=1 break r = ( coef[l] - lb[l] // gcd[l][l] ) % K for d in R(l+1): lb[d] = ( lb[d] + r * gcd[l][d] ) % K if l == 0: coef[l]+=1 break answer = 0 prod = 1 for d in R(L+1): answer += coef[d] * prod if gcd_inv[d] != 0: prod *= gcd_inv[d]; O( answer )