結果
問題 |
No.1814 Uribo Road (Easy)
|
ユーザー |
![]() |
提出日時 | 2023-12-19 07:48:57 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 170 ms / 2,000 ms |
コード長 | 3,251 bytes |
コンパイル時間 | 292 ms |
コンパイル使用メモリ | 13,056 KB |
実行使用メモリ | 16,000 KB |
最終ジャッジ日時 | 2024-09-27 08:39:41 |
合計ジャッジ時間 | 5,607 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 44 |
ソースコード
import sys readline=sys.stdin.readline import heapq class Graph: def __init__(self,V,edges=False,graph=False,directed=False,weighted=False,inf=float("inf")): self.V=V self.directed=directed self.weighted=weighted self.inf=inf if graph: self.graph=graph self.edges=[] for i in range(self.V): if self.weighted: for j,d in self.graph[i]: if self.directed or not self.directed and i<=j: self.edges.append((i,j,d)) else: for j in self.graph[i]: if self.directed or not self.directed and i<=j: self.edges.append((i,j)) else: self.edges=edges self.graph=[[] for i in range(self.V)] if weighted: for i,j,d in self.edges: self.graph[i].append((j,d)) if not self.directed: self.graph[j].append((i,d)) else: for i,j in self.edges: self.graph[i].append(j) if not self.directed: self.graph[j].append(i) def Dijkstra(self,s,route_restoration=False): dist=[self.inf]*self.V dist[s]=0 queue=[(0,s)] if route_restoration: parents=[None]*self.V while queue: dx,x=heapq.heappop(queue) if dist[x]<dx: continue for y,dy in self.graph[x]: if dist[y]>dx+dy: dist[y]=dx+dy if route_restoration: parents[y]=x heapq.heappush(queue,(dist[y],y)) if route_restoration: return dist,parents else: return dist N,M,K=map(int,readline().split()) R=list(map(int,readline().split())) for k in range(K): R[k]-=1 edges=[] inf=1<<60 for m in range(M): A,B,C=map(int,readline().split()) A-=1;B-=1 edges.append((A,B,C)) G=Graph(N,edges=edges,weighted=True) dist=[[None]*2*K for x in range(2*K)] for i in range(K): D=G.Dijkstra(edges[R[i]][0]) for j in range(K): dist[2*i][2*j]=D[edges[R[j]][1]]+edges[R[j]][2] dist[2*i][2*j+1]=D[edges[R[j]][0]]+edges[R[j]][2] D=G.Dijkstra(edges[R[i]][1]) for j in range(K): dist[2*i+1][2*j]=D[edges[R[j]][1]]+edges[R[j]][2] dist[2*i+1][2*j+1]=D[edges[R[j]][0]]+edges[R[j]][2] dp=[[inf]*2*K for bit in range(1<<K)] D=G.Dijkstra(0) for k in range(K): dp[1<<k][2*k]=D[edges[R[k]][1]]+edges[R[k]][2] dp[1<<k][2*k+1]=D[edges[R[k]][0]]+edges[R[k]][2] for bit in range(1<<K): for i in range(K): if not bit&1<<i: continue for j in range(K): if i==j: continue if not bit&1<<j: continue for ii in (2*i,2*i+1): for jj in (2*j,2*j+1): dp[bit][ii]=min(dp[bit][ii],dp[bit^1<<i][jj]+dist[jj][ii]) D=G.Dijkstra(N-1) ans=min(min(dp[-1][2*i]+D[edges[R[i]][0]] for i in range(K)),min(dp[-1][2*i+1]+D[edges[R[i]][1]] for i in range(K))) print(ans)