結果

問題 No.2592 おでぶなおばけさん 2
ユーザー NyaanNyaanNyaanNyaan
提出日時 2023-12-20 14:07:06
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 59 ms / 2,500 ms
コード長 20,461 bytes
コンパイル時間 2,623 ms
コンパイル使用メモリ 258,108 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-09-27 09:50:38
合計ジャッジ時間 12,000 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 15 ms
6,940 KB
testcase_02 AC 20 ms
6,944 KB
testcase_03 AC 9 ms
6,940 KB
testcase_04 AC 10 ms
6,944 KB
testcase_05 AC 35 ms
6,940 KB
testcase_06 AC 21 ms
6,944 KB
testcase_07 AC 26 ms
6,940 KB
testcase_08 AC 25 ms
6,940 KB
testcase_09 AC 10 ms
6,940 KB
testcase_10 AC 13 ms
6,940 KB
testcase_11 AC 25 ms
6,940 KB
testcase_12 AC 7 ms
6,940 KB
testcase_13 AC 45 ms
6,940 KB
testcase_14 AC 45 ms
6,948 KB
testcase_15 AC 37 ms
6,944 KB
testcase_16 AC 45 ms
6,940 KB
testcase_17 AC 49 ms
6,944 KB
testcase_18 AC 38 ms
6,944 KB
testcase_19 AC 33 ms
6,944 KB
testcase_20 AC 33 ms
6,940 KB
testcase_21 AC 28 ms
6,940 KB
testcase_22 AC 38 ms
6,944 KB
testcase_23 AC 49 ms
6,940 KB
testcase_24 AC 41 ms
6,940 KB
testcase_25 AC 30 ms
6,940 KB
testcase_26 AC 30 ms
6,940 KB
testcase_27 AC 57 ms
6,940 KB
testcase_28 AC 57 ms
6,944 KB
testcase_29 AC 58 ms
6,944 KB
testcase_30 AC 58 ms
6,940 KB
testcase_31 AC 58 ms
6,940 KB
testcase_32 AC 59 ms
6,940 KB
testcase_33 AC 58 ms
6,940 KB
testcase_34 AC 58 ms
6,944 KB
testcase_35 AC 58 ms
6,944 KB
testcase_36 AC 58 ms
6,940 KB
testcase_37 AC 58 ms
6,940 KB
testcase_38 AC 59 ms
6,944 KB
testcase_39 AC 58 ms
6,944 KB
testcase_40 AC 58 ms
6,944 KB
testcase_41 AC 58 ms
6,940 KB
testcase_42 AC 58 ms
6,944 KB
testcase_43 AC 59 ms
6,940 KB
testcase_44 AC 58 ms
6,944 KB
testcase_45 AC 58 ms
6,940 KB
testcase_46 AC 58 ms
6,944 KB
testcase_47 AC 52 ms
6,940 KB
testcase_48 AC 53 ms
6,940 KB
testcase_49 AC 52 ms
6,944 KB
testcase_50 AC 51 ms
6,940 KB
testcase_51 AC 51 ms
6,944 KB
testcase_52 AC 58 ms
6,940 KB
testcase_53 AC 58 ms
6,940 KB
testcase_54 AC 58 ms
6,944 KB
testcase_55 AC 57 ms
6,940 KB
testcase_56 AC 58 ms
6,940 KB
testcase_57 AC 29 ms
6,940 KB
testcase_58 AC 58 ms
6,940 KB
testcase_59 AC 58 ms
6,940 KB
testcase_60 AC 58 ms
6,944 KB
testcase_61 AC 58 ms
6,940 KB
testcase_62 AC 59 ms
6,940 KB
testcase_63 AC 58 ms
6,940 KB
testcase_64 AC 59 ms
6,940 KB
testcase_65 AC 55 ms
6,944 KB
testcase_66 AC 55 ms
6,944 KB
testcase_67 AC 55 ms
6,940 KB
testcase_68 AC 56 ms
6,944 KB
testcase_69 AC 54 ms
6,944 KB
testcase_70 AC 56 ms
6,940 KB
testcase_71 AC 56 ms
6,940 KB
testcase_72 AC 56 ms
6,944 KB
testcase_73 AC 56 ms
6,940 KB
testcase_74 AC 2 ms
6,944 KB
testcase_75 AC 58 ms
6,944 KB
testcase_76 AC 58 ms
6,940 KB
testcase_77 AC 58 ms
6,940 KB
testcase_78 AC 57 ms
6,944 KB
testcase_79 AC 59 ms
6,944 KB
testcase_80 AC 58 ms
6,940 KB
testcase_81 AC 57 ms
6,944 KB
testcase_82 AC 58 ms
6,940 KB
testcase_83 AC 58 ms
6,940 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'void q()':
main.cpp:814:25: warning: narrowing conversion of 'K' from 'long long int' to 'ModInt18446744069414584321::U' {aka 'long long unsigned int'} [-Wnarrowing]

ソースコード

diff #

/**
 * date   : 2023-12-20 14:06:57
 * author : Nyaan
 */

#define NDEBUG

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility

namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
  vector<vector<T>> ret;
  vector<T> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
  T res = I;
  for (; n; f(a = a * a), n >>= 1) {
    if (n & 1) f(res = res * a);
  }
  return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
  return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}

template <typename T>
T Rev(const T &v) {
  T res = v;
  reverse(begin(res), end(res));
  return res;
}

template <typename T>
vector<T> Transpose(const vector<T> &v) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      res[j][i] = v[i][j];
    }
  }
  return res;
}

template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      if (clockwise) {
        res[W - 1 - j][i] = v[i][j];
      } else {
        res[j][H - 1 - i] = v[i][j];
      }
    }
  }
  return res;
}

}  // namespace Nyaan


// bit operation

namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan


// inout

namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan


// debug


#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif


// macro

#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)


namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }


//



using namespace std;

struct ModInt18446744069414584321 {
  using M = ModInt18446744069414584321;
  using U = unsigned long long;
  using U128 = __uint128_t;

  static constexpr U mod = 18446744069414584321uLL;
  U x;

  static constexpr U modulo(U128 y) {
    U l = y & U(-1);
    U m = (y >> 64) & unsigned(-1);
    U h = y >> 96;
    U u = h + m + (m ? mod - (m << 32) : 0);
    U v = mod <= l ? l - mod : l;
    return v - u + (v < u ? mod : 0);
  }

  ModInt18446744069414584321() : x(0) {}
  ModInt18446744069414584321(U _x) : x(_x) {}
  U get() const { return x; }
  static U get_mod() { return mod; }

  friend M operator+(const M& l, const M& r) {
    U y = l.x - (mod - r.x);
    if (l.x < mod - r.x) y += mod;
    return M{y};
  }
  friend M operator-(const M& l, const M& r) {
    U y = l.x - r.x;
    if (l.x < r.x) y += mod;
    return M{y};
  }
  friend M operator*(const M& l, const M& r) {
    return M{modulo(U128(l.x) * r.x)};
  }
  friend M operator/(const M& l, const M& r) {
    return M{modulo(U128(l.x) * r.inverse().x)};
  }

  M& operator+=(const M& r) { return *this = *this + r; }
  M& operator-=(const M& r) { return *this = *this - r; }
  M& operator*=(const M& r) { return *this = *this * r; }
  M& operator/=(const M& r) { return *this = *this / r; }
  M operator-() const { return M{x ? mod - x : 0uLL}; }
  M operator+() const { return *this; }

  M pow(U e) const {
    M res{1}, a{*this};
    while (e) {
      if (e & 1) res = res * a;
      a = a * a;
      e >>= 1;
    }
    return res;
  }
  M inverse() const {
    assert(x != 0);
    return this->pow(mod - 2);
  }

  friend bool operator==(const M& l, const M& r) { return l.x == r.x; }
  friend bool operator!=(const M& l, const M& r) { return l.x != r.x; }
  friend ostream& operator<<(ostream& os, const M& r) { return os << r.x; }
};

struct NTT18446744069414584321 {
  using mint = ModInt18446744069414584321;
  using U = typename mint::U;

  static constexpr U mod = mint::mod;
  static constexpr U pr = 7;
  static constexpr int level = 32;
  mint dw[level], dy[level];

  void setwy(int k) {
    mint w[level], y[level];
    w[k - 1] = mint(pr).pow((mod - 1) / (1LL << k));
    y[k - 1] = w[k - 1].inverse();
    for (int i = k - 2; i > 0; --i)
      w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
    dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2];
    for (int i = 3; i < k; ++i) {
      dw[i] = dw[i - 1] * y[i - 2] * w[i];
      dy[i] = dy[i - 1] * w[i - 2] * y[i];
    }
  }

  NTT18446744069414584321() { setwy(level); }

  void fft(vector<mint>& a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    if (k & 1) {
      int v = 1 << (k - 1);
      for (int j = 0; j < v; ++j) {
        mint ajv = a[j + v];
        a[j + v] = a[j] - ajv;
        a[j] += ajv;
      }
    }
    int u = 1 << (2 + (k & 1));
    int v = 1 << (k - 2 - (k & 1));
    mint one = mint(1);
    mint imag = dw[1];
    while (v) {
      {
        int j0 = 0;
        int j1 = v;
        int j2 = j1 + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
        }
      }
      mint ww = one, xx = one * dw[2], wx = one;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, wx = ww * xx;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,
               t3 = a[j2 + v] * wx;
          mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
        }
        xx *= dw[__builtin_ctzll((jh += 4))];
      }
      u <<= 2;
      v >>= 2;
    }
  }

  void ifft(vector<mint>& a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    int u = 1 << (k - 2);
    int v = 1;
    mint one = mint(1);
    mint imag = dy[1];
    while (u) {
      {
        int j0 = 0;
        int j1 = v;
        int j2 = v + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
          a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
          a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
        }
      }
      mint ww = one, xx = one * dy[2], yy = one;
      u <<= 2;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, yy = xx * imag;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
          mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
          a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
          a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
        }
        xx *= dy[__builtin_ctzll(jh += 4)];
      }
      u >>= 4;
      v <<= 2;
    }
    if (k & 1) {
      u = 1 << (k - 1);
      for (int j = 0; j < u; ++j) {
        mint ajv = a[j] - a[j + u];
        a[j] += a[j + u];
        a[j + u] = ajv;
      }
    }
  }

  void ntt(vector<mint>& a) {
    if ((int)a.size() <= 1) return;
    fft(a, __builtin_ctz(a.size()));
  }

  void intt(vector<mint>& a) {
    if ((int)a.size() <= 1) return;
    ifft(a, __builtin_ctz(a.size()));
    mint iv = mint(a.size()).inverse();
    for (auto& x : a) x *= iv;
  }

  vector<mint> multiply(const vector<mint>& a, const vector<mint>& b) {
    int l = a.size() + b.size() - 1;
    if (min<int>(a.size(), b.size()) <= 40) {
      vector<mint> s(l);
      for (int i = 0; i < (int)a.size(); ++i)
        for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
      return s;
    }
    int k = 2, M = 4;
    while (M < l) M <<= 1, ++k;
    setwy(k);
    vector<mint> s(M);
    for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i];
    if (a == b) {
      fft(s, k);
      for (int i = 0; i < M; i++) s[i] *= s[i];
    } else {
      vector<mint> t(M);
      for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i];
      fft(s, k), fft(t, k);
      for (int i = 0; i < M; ++i) s[i] *= t[i];
    }
    ifft(s, k);
    s.resize(l);
    mint invm = mint(M).inverse();
    for (int i = 0; i < l; ++i) s[i] *= invm;
    return s;
  }

  // すべての要素が正, かつ答えの各成分が mod 以下である必要がある
  template <typename I, enable_if_t<is_integral_v<I>>* = nullptr>
  vector<unsigned long long> multiply(const vector<I>& a, const vector<I>& b) {
    if (min<int>(a.size(), b.size()) <= 40) {
      vector<U> c(a.size() + b.size() - 1);
      for (int i = 0; i < (int)a.size(); ++i) {
        for (int j = 0; j < (int)b.size(); ++j) c[i + j] += U(a[i]) * U(b[j]);
      }
      return c;
    }
    vector<mint> s(a.size()), t(b.size());
    for (int i = 0; i < (int)a.size(); i++) s[i] = a[i];
    for (int i = 0; i < (int)b.size(); i++) t[i] = b[i];
    auto u = multiply(s, t);
    vector<U> c(u.size());
    for (int i = 0; i < (int)c.size(); i++) c[i] = u[i].x;
    return c;
  }

  vector<int> bigint_mul_base_10_9(const vector<int>& a, const vector<int>& b) {
    constexpr int D = 1000000000;
    constexpr int B = 1000000;
    constexpr int C = 1000;
    auto convert = [&](const vector<int>& v) -> vector<mint> {
      vector<mint> c((v.size() * 3 + 1) / 2);
      int i = 0;
      for (; i * 2 + 1 < (int)v.size(); i++) {
        c[i * 3 + 0].x = v[i * 2 + 0] % B;
        c[i * 3 + 1].x = v[i * 2 + 0] / B + v[i * 2 + 1] % C * C;
        c[i * 3 + 2].x = v[i * 2 + 1] / C;
      }
      if (i * 2 + 1 == (int)v.size()) {
        c[i * 3 + 0].x = v[i * 2 + 0] % B;
        c[i * 3 + 1].x = v[i * 2 + 0] / B;
      }
      return c;
    };
    auto revert = [&](const vector<mint>& v) -> vector<int> {
      vector<int> c(v.size() + 4);
      int i = 0;
      U s = 0;
      for (; i < (int)v.size(); i++) s += v[i].x, c[i] = s % B, s /= B;
      while (s) c[i] = s % B, s /= B, i++;
      while (!c.empty() && c.back() == 0) c.pop_back();
      i = 0;
      for (; i * 3 + 0 < (int)c.size(); i++) {
        long long x = c[i * 3 + 0];
        c[i * 3 + 0] = 0;
        if (i * 3 + 1 < (int)c.size()) {
          x += 1LL * c[i * 3 + 1] * B;
          c[i * 3 + 1] = 0;
        }
        if (i * 3 + 2 < (int)c.size()) {
          x += 1LL * c[i * 3 + 2] * (1LL * B * B);
          c[i * 3 + 2] = 0;
        }
        c[i * 2 + 0] = x % D;
        if (i * 2 + 1 < (int)c.size()) c[i * 2 + 1] = x / D;
      }
      while (!c.empty() && c.back() == 0) c.pop_back();
      return c;
    };
    return revert(multiply(convert(a), convert(b)));
  }
};

NTT18446744069414584321 ntt18446744069414584321;

/**
 *  mod 18446744069414584321 (= 2^64 - 2^32 + 1) 上の数論変換
 */


using namespace Nyaan;

void q() {
  using mint = ModInt18446744069414584321;
  inl(N, Q, K);
  vl A(N);
  in(A);

  V<mint> v(N);
  u64 mod = mint::get_mod();
  rep(i, N) v[i] = mint{K}.pow(i) * (A[i] < 0 ? mod + A[i] : A[i]);
  auto rui = mkrui(v);
  trc(rui);
  rep(i, Q) {
    ini(l, r);
    --l;
    out(rui[l] == rui[r] ? "No" : "Yes");
  }
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}
0