結果
問題 | No.1265 Balloon Survival |
ユーザー | srjywrdnprkt |
提出日時 | 2023-12-23 00:06:52 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 77 ms / 2,000 ms |
コード長 | 5,793 bytes |
コンパイル時間 | 2,657 ms |
コンパイル使用メモリ | 220,420 KB |
実行使用メモリ | 16,816 KB |
最終ジャッジ日時 | 2024-09-27 11:40:43 |
合計ジャッジ時間 | 4,977 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 11 ms
6,944 KB |
testcase_15 | AC | 8 ms
6,944 KB |
testcase_16 | AC | 5 ms
6,940 KB |
testcase_17 | AC | 42 ms
16,220 KB |
testcase_18 | AC | 6 ms
6,940 KB |
testcase_19 | AC | 5 ms
6,944 KB |
testcase_20 | AC | 11 ms
6,944 KB |
testcase_21 | AC | 20 ms
7,284 KB |
testcase_22 | AC | 14 ms
7,664 KB |
testcase_23 | AC | 15 ms
7,408 KB |
testcase_24 | AC | 76 ms
16,348 KB |
testcase_25 | AC | 75 ms
16,352 KB |
testcase_26 | AC | 77 ms
16,456 KB |
testcase_27 | AC | 74 ms
16,496 KB |
testcase_28 | AC | 73 ms
15,900 KB |
testcase_29 | AC | 75 ms
16,720 KB |
testcase_30 | AC | 75 ms
16,816 KB |
testcase_31 | AC | 74 ms
16,396 KB |
testcase_32 | AC | 73 ms
16,196 KB |
testcase_33 | AC | 75 ms
16,180 KB |
testcase_34 | AC | 2 ms
6,944 KB |
testcase_35 | AC | 2 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; // vector OA = (x, y) template <typename T> struct vec{ T x, y; vec (T xx=0, T yy=0) : x(xx), y(yy) {}; vec operator-() const { return vec(-x, -y); } vec& operator+=(const vec &w) { x += w.x; y += w.y; return *this; } vec& operator-=(const vec &w) { x -= w.x; y -= w.y; return *this; } vec operator+(const vec &w) const { vec res(*this); return res += w; } vec operator-(const vec &w) const { vec res(*this); return res-=w; } vec operator*=(T a){ x *= a; y *= a; return *this; } vec operator*(T a){ vec res(*this); return res*=a; } pair<T, T> to_pair() {return {x, y};} }; //Inner product of vectors v and w template <typename T> T dot(vec<T> v, vec<T> w){ return v.x * w.x + v.y * w.y; } //Outer product of vector v and w template <typename T> T outer(vec<T> v, vec<T> w){ return v.x * w.y - w.x * v.y; } template <typename T> vec<T> normalize(vec<T> &a){ T x=a.x, y=a.y, g; if (x == 0) return vec((T)0,y/abs(y)); else if (y == 0) return vec(x/abs(x), (T)0); g = abs(gcd(x, y)); return vec(x/g, y/g); } //size of triangle ABC template <typename T> T heron(vec<T> &a, vec<T> &b, vec<T> &c){ return abs(outer(b-a, c-a)) / 2; } //size of polygon A1A2...An template <typename T> T area(vector<vec<T>> P){ int n=P.size(); T S=0; for (int i=0; i<n; i++) S += outer(P[i], P[(i+1)%n]); return abs(S)/2; } //Distance between point a and b template <typename T> T distance(vec<T> &a, vec<T> &b){ return dot(a-b, a-b); } //Manhattan distance between point a and b template <typename T> T manhattan(vec<T> &a, vec<T> &b){ return abs(a.x-b.x)+abs(a.y-b.y); } //Argument of complex template <typename T> T arg(vec<T> a){ complex<T> c(a.x, a.y); T res = arg(c); if (res < 0) res += M_PI*2; return res; } //rotation around origin template <typename T> vec<T> rotate(vec<T> &a, T theta){ complex<T> c(a.x, a.y), p = polar((T)1, theta); c *= p; return vec(real(c), imag(c)); } //Convex Hull(Smallest Convex set containing all given vecs) //Grahum Scan (O(NlogN)) template <typename T> vector<vec<T>> convex_hull(vector<vec<T>> P){ sort(P.begin(), P.end(), [](vec<T> &p1, vec<T> &p2) { if (p1.x != p2.x) return p1.x < p2.x; return p1.y < p2.y; }); int N=P.size(), k=0, t; vector<vec<T>> res(N*2); for (int i=0; i<N; i++){ while(k > 1 && outer(res[k-1]-res[k-2], P[i]-res[k-1]) <= 0) k--; res[k] = P[i]; k++; } t = k; for (int i=N-2; i>=0; i--){ while(k > t && outer(res[k-1]-res[k-2], P[i]-res[k-1]) <= 0) k--; res[k] = P[i]; k++; } res.resize(k-1); return res; } //Sorting by argument(O(NlogN)) template <typename T> void arg_sort(vector<vec<T>> &P){ int N=P.size(); vector<vec<T>> U, L; for (int i=0; i<N; i++){ if (P[i].y > 0) U.push_back(P[i]); else if (P[i].y < 0) L.push_back(P[i]); else{ assert (P[i].x != 0); if (P[i].x > 0) U.push_back(P[i]); else L.push_back(P[i]); } } auto key=[](vec<T> const &a, vec<T> const &b)->bool{ return outer(a, b) > 0;}; sort(U.begin(), U.end(), key); sort(L.begin(), L.end(), key); P = U; for (auto &x : L) P.push_back(x); } //judge if segment AB intersects segment CD template <typename T> bool intersect(vec<T> &a, vec<T> &b, vec<T> &c, vec<T> &d){ T s, t; s = outer(b-a, c-a); t = outer(b-a, d-a); if (s == 0 && t == 0){ if (max(a.x, b.x)<min(c.x, d.x) || max(a.y, b.y)<min(c.y, d.y) || min(a.x, b.x)>max(c.x, d.x) || min(a.y, b.y)>max(c.y, d.y)) return 0; else return 1; } if ((s > 0 && t > 0) || (s < 0 && t < 0)) return 0; s = outer(d-c, a-c); t = outer(d-c, b-c); if ((s > 0 && t > 0) || (s < 0 && t < 0)) return 0; return 1; } //straight line template <typename T> struct line{ //ax+by+c=0 T a, b, c; // Ax+By+C=0 line (T A=0, T B=0, T C=0) : a(A), b(B), c(C) {}; // line passing through p and q line (vec<T> &p, vec<T> &q) {a = (q.y-p.y); b = (p.x-q.x); c = -p.x*q.y + p.y*q.x;}; T slope() {return (b == 0 ? numeric_limits<T>::infinity() : -a/b);} T intercept() {return (b == 0 ? numeric_limits<T>::infinity() : -c/b);} }; //Intersection of straight lines p and q template <typename T> vec<T> intersection(line<T> &p, line<T> &q){ T coef = - (T)1/(p.a*q.b-q.a*p.b), x, y; x = (q.b*p.c-p.b*q.c) * coef; y = (-q.a*p.c+p.a*q.c) * coef; return vec(x, y); } //distance between line PQ and point R template <typename T> T dist_line_point(vec<T> &p, vec<T> &q, vec<T> &r){ // ax+by+c=0 T a = (q.y-p.y), b = (p.x-q.x), c = -p.x*q.y + p.y*q.x; return abs(a*r.x+b*r.y-c) / sqrt(a*a+b*b); }; int main(){ cin.tie(nullptr); ios_base::sync_with_stdio(false); ll N, ans=0; ll x, y, d; cin >> N; vector<vec<ll>> p(N); for (int i=0; i<N; i++){ cin >> x >> y; p[i] = vec(x, y); } vector<tuple<ll, ll, ll>> v; for (int i=0; i<N; i++){ for (int j=i+1; j<N; j++){ v.push_back({distance(p[i], p[j]), i, j}); } } sort(v.begin(), v.end()); unordered_set<ll> st; for (int i=1; i<N; i++) st.insert(i); for (auto [d, i, j] : v){ if (i == 0 && st.count(j)){ ans++; st.erase(j); } if (st.count(i) && st.count(j)){ st.erase(i); st.erase(j); } } cout << ans << endl; return 0; }