結果
| 問題 |
No.1813 Magical Stones
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-12-24 02:41:33 |
| 言語 | Go (1.23.4) |
| 結果 |
AC
|
| 実行時間 | 306 ms / 2,000 ms |
| コード長 | 4,745 bytes |
| コンパイル時間 | 11,804 ms |
| コンパイル使用メモリ | 237,748 KB |
| 実行使用メモリ | 43,088 KB |
| 最終ジャッジ日時 | 2024-09-27 13:34:48 |
| 合計ジャッジ時間 | 19,492 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 40 |
ソースコード
// StronglyConnectedComponent-有向图SCC
package main
import (
"bufio"
"fmt"
"os"
)
func main() {
yuki1813()
// yosupo()
// yuki1293()
}
func yuki1813() {
// https://yukicoder.me/problems/no/1813
// 不等关系:有向边; 全部相等:强连通(环)
// 给定一个DAG 求将DAG变为一个环(强连通分量)的最少需要添加的边数
// !答案为 `max(入度为0的点的个数, 出度为0的点的个数)`
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, m int
fmt.Fscan(in, &n, &m)
graph := make([][]int, n)
for i := 0; i < m; i++ {
var u, v int
fmt.Fscan(in, &u, &v)
u, v = u-1, v-1
graph[u] = append(graph[u], v)
}
count, belong := StronglyConnectedComponent(graph)
if count == 1 { // 缩成一个点了,说明是强连通的
fmt.Fprintln(out, 0)
return
}
dag := SCCDag(graph, count, belong)
indeg, outDeg := make([]int, count), make([]int, count)
for i := 0; i < count; i++ {
for _, next := range dag[i] {
indeg[next]++
outDeg[i]++
}
}
in0, out0 := 0, 0
for i := 0; i < count; i++ {
if indeg[i] == 0 {
in0++
}
if outDeg[i] == 0 {
out0++
}
}
fmt.Fprintln(out, max(in0, out0))
}
func yosupo() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, m int
fmt.Fscan(in, &n, &m)
graph := make([][]int, n)
for i := 0; i < m; i++ {
var u, v int
fmt.Fscan(in, &u, &v)
graph[u] = append(graph[u], v)
}
count, belong := StronglyConnectedComponent(graph)
group := make([][]int, count)
for i := 0; i < n; i++ {
group[belong[i]] = append(group[belong[i]], i)
}
fmt.Fprintln(out, count)
for _, p := range group {
fmt.Fprint(out, len(p))
for _, v := range p {
fmt.Fprint(out, " ", v)
}
fmt.Fprintln(out)
}
}
func yuki1293() {
// https://yukicoder.me/problems/no/1293
// No.1293 2種類の道路-SCC
// 无向图中有两种路径,各有road1,road2条
// 求有多少个二元组(a,b),满足从a到b经过 '若干条第一种路径+若干条第二种路径'
// !每个点i拆成点2*i和点2*i+1,2*i->2*i+1
// !第一种路径: 2*i<->2*j
// !第二种路径: 2*i+1<->2*j+1
// 然后对每个顶点求出有多少个可以到达自己
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, road1, road2 int
fmt.Fscan(in, &n, &road1, &road2)
graph := make([][]int, 2*n)
for i := 0; i < road1; i++ {
var a, b int
fmt.Fscan(in, &a, &b)
a, b = a-1, b-1
graph[2*a] = append(graph[2*a], 2*b)
graph[2*b] = append(graph[2*b], 2*a)
}
for i := 0; i < road2; i++ {
var a, b int
fmt.Fscan(in, &a, &b)
a, b = a-1, b-1
graph[2*a+1] = append(graph[2*a+1], 2*b+1)
graph[2*b+1] = append(graph[2*b+1], 2*a+1)
}
for i := 0; i < n; i++ {
graph[2*i] = append(graph[2*i], 2*i+1)
}
count, belong := StronglyConnectedComponent(graph)
dag := SCCDag(graph, count, belong)
dp := make([]int, count)
for i := 0; i < n; i++ {
dp[belong[2*i]]++
}
for i := 0; i < count; i++ {
for _, to := range dag[i] {
dp[to] += dp[i]
}
}
res := 0
for i := 0; i < n; i++ {
res += dp[belong[2*i+1]] - 1 // !减去自己到自己的路径1
}
fmt.Fprintln(out, res)
}
// 有向图强连通分量分解.
func StronglyConnectedComponent(graph [][]int) (count int, belong []int) {
n := len(graph)
belong = make([]int, n)
low := make([]int, n)
order := make([]int, n)
for i := range order {
order[i] = -1
}
now := 0
path := []int{}
var dfs func(int)
dfs = func(v int) {
low[v] = now
order[v] = now
now++
path = append(path, v)
for _, to := range graph[v] {
if order[to] == -1 {
dfs(to)
low[v] = min(low[v], low[to])
} else {
low[v] = min(low[v], order[to])
}
}
if low[v] == order[v] {
for {
u := path[len(path)-1]
path = path[:len(path)-1]
order[u] = n
belong[u] = count
if u == v {
break
}
}
count++
}
}
for i := 0; i < n; i++ {
if order[i] == -1 {
dfs(i)
}
}
for i := 0; i < n; i++ {
belong[i] = count - 1 - belong[i]
}
return
}
// 有向图的强连通分量缩点.
func SCCDag(graph [][]int, count int, belong []int) (dag [][]int) {
dag = make([][]int, count)
adjSet := make([]map[int]struct{}, count)
for i := 0; i < count; i++ {
adjSet[i] = make(map[int]struct{})
}
for cur, nexts := range graph {
for _, next := range nexts {
if bid1, bid2 := belong[cur], belong[next]; bid1 != bid2 {
adjSet[bid1][bid2] = struct{}{}
}
}
}
for i := 0; i < count; i++ {
for next := range adjSet[i] {
dag[i] = append(dag[i], next)
}
}
return
}
func min(a, b int) int {
if a <= b {
return a
}
return b
}
func max(a, b int) int {
if a >= b {
return a
}
return b
}