結果

問題 No.2604 Initial Motion
ユーザー 👑 seekworserseekworser
提出日時 2023-12-29 20:30:20
言語 Nim
(2.2.0)
結果
MLE  
実行時間 -
コード長 21,957 bytes
コンパイル時間 6,474 ms
コンパイル使用メモリ 95,548 KB
実行使用メモリ 733,884 KB
最終ジャッジ日時 2024-09-27 16:20:39
合計ジャッジ時間 13,539 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
13,756 KB
testcase_01 AC 1 ms
6,816 KB
testcase_02 AC 1 ms
6,940 KB
testcase_03 AC 140 ms
28,728 KB
testcase_04 AC 146 ms
28,752 KB
testcase_05 AC 133 ms
28,764 KB
testcase_06 AC 139 ms
28,856 KB
testcase_07 AC 145 ms
28,824 KB
testcase_08 AC 150 ms
28,760 KB
testcase_09 AC 140 ms
28,728 KB
testcase_10 AC 140 ms
28,768 KB
testcase_11 AC 143 ms
28,844 KB
testcase_12 AC 141 ms
28,664 KB
testcase_13 MLE -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

import macros
macro Please(x): untyped = nnkStmtList.newTree()

Please use Nim-ACL
Please use Nim-ACL
Please use Nim-ACL



import macros;macro ImportExpand(s:untyped):untyped = parseStmt($s[2])
import macros
# {.checks: off.}
ImportExpand "cplib/tmpl/citrus.nim" <=== "when not declared CPLIB_TMPL_CITRUS:\n    const CPLIB_TMPL_CITRUS* = 1\n    {.warning[UnusedImport]: off.}\n    {.hint[XDeclaredButNotUsed]: off.}\n    import os\n    import algorithm\n    import sequtils\n    import tables\n    import macros\n    import std/math\n    import sets\n    import strutils\n    import strformat\n    import sugar\n    import streams\n    import deques\n    import bitops\n    import heapqueue\n    const MODINT998244353* = 998244353\n    const MODINT1000000007* = 1000000007\n    const INF* = 100100111\n    const INFL* = int(3300300300300300491)\n    type double* = float64\n    let readNext = iterator(getsChar: bool = false): string {.closure.} =\n        while true:\n            var si: string\n            try: si = stdin.readLine\n            except EOFError: yield \"\"\n            for s in si.split:\n                if getsChar:\n                    for i in 0..<s.len(): yield s[i..i]\n                else:\n                    yield s\n    proc input*(t: typedesc[string]): string = readNext()\n    proc input*(t: typedesc[char]): char = readNext(true)[0]\n    proc input*(t: typedesc[int]): int = readNext().parseInt\n    proc input*(t: typedesc[float]): float = readNext().parseFloat\n    macro input*(t: typedesc, n: varargs[int]): untyped =\n        var repStr = \"\"\n        for arg in n:\n            repStr &= &\"({arg.repr}).newSeqWith \"\n        parseExpr(&\"{repStr}input({t})\")\n    macro input*(ts: varargs[auto]): untyped =\n        var tupStr = \"\"\n        for t in ts:\n            tupStr &= &\"input({t.repr}),\"\n        parseExpr(&\"({tupStr})\")\n    macro input*(n: int, ts: varargs[auto]): untyped =\n        for typ in ts:\n            if typ.typeKind != ntyAnything:\n                error(\"Expected typedesc, got \" & typ.repr, typ)\n        parseExpr(&\"({n.repr}).newSeqWith input({ts.repr})\")\n    proc `fmtprint`*(x: int or string or char): string = return $x\n    proc `fmtprint`*(x: float or float32 or\n            float64): string = return &\"{x:.16f}\"\n    proc `fmtprint`*[T](x: seq[T] or Deque[T] or HashSet[T] or set[\n            T]): string = return x.toSeq.join(\" \")\n    proc `fmtprint`*[T, N](x: array[T, N]): string = return x.toSeq.join(\" \")\n    proc `fmtprint`*[T](x: HeapQueue[T]): string =\n        var q = x\n        while q.len != 0:\n            result &= &\"{q.pop()}\"\n            if q.len != 0: result &= \" \"\n    proc `fmtprint`*[T](x: CountTable[T]): string =\n        result = x.pairs.toSeq.mapIt(&\"{it[0]}: {it[1]}\").join(\" \")\n    proc `fmtprint`*[K, V](x: Table[K, V]): string =\n        result = x.pairs.toSeq.mapIt(&\"{it[0]}: {it[1]}\").join(\" \")\n    proc print*(prop: tuple[f: File, sepc: string, endc: string, flush: bool],\n            args: varargs[string, `fmtprint`]) =\n        for i in 0..<len(args):\n            prop.f.write(&\"{args[i]}\")\n            if i != len(args) - 1: prop.f.write(prop.sepc) else: prop.f.write(prop.endc)\n        if prop.flush: prop.f.flushFile()\n    proc print*(args: varargs[string, `fmtprint`]) = print((f: stdout,\n            sepc: \" \", endc: \"\\n\", flush: false), args)\n    proc inner_debug*(x: auto) = print((f: stderr, sepc: \"\", endc: \"\",\n            flush: true), x)\n    const LOCAL_DEBUG{.booldefine.} = false\n    macro debug*(n: varargs[typed]): untyped =\n        when LOCAL_DEBUG:\n            result = newNimNode(nnkStmtList, n)\n            for i in 0..n.len-1:\n                if n[i].kind == nnkStrLit:\n                    result.add(newCall(\"inner_debug\", n[i]))\n                    result.add(newCall(\"inner_debug\", newStrLitNode(\": \")))\n                    result.add(newCall(\"inner_debug\", n[i]))\n                else:\n                    result.add(newCall(\"inner_debug\", toStrLit(n[i])))\n                    result.add(newCall(\"inner_debug\", newStrLitNode(\": \")))\n                    result.add(newCall(\"inner_debug\", n[i]))\n                if i != n.len-1:\n                    result.add(newCall(\"inner_debug\", newStrLitNode(\", \")))\n                else:\n                    result.add(newCall(\"inner_debug\", newStrLitNode(\"\\n\")))\n        else:\n            return quote do:\n                discard\n    proc `%`*(x: SomeInteger, y: SomeInteger): int = (((x mod y) + y) mod y)\n    proc `//`*(x: int, y: int): int = ((x - (x%y)) div y)\n    proc `^`*(x: int, y: int): int = x xor y\n    proc `&`*(x: int, y: int): int = x and y\n    proc `|`*(x: int, y: int): int = x or y\n    proc `>>`*(x: int, y: int): int = x shr y\n    proc `<<`*(x: int, y: int): int = x shl y\n    proc `%=`*(x: var SomeInteger or int64, y: SomeInteger or\n            int64): void = x = x % y\n    proc `//=`*(x: var int, y: int): void = x = x // y\n    proc `^=`*(x: var int, y: int): void = x = x ^ y\n    proc `&=`*(x: var int, y: int): void = x = x & y\n    proc `|=`*(x: var int, y: int): void = x = x | y\n    proc `>>=`*(x: var int, y: int): void = x = x >> y\n    proc `<<=`*(x: var int, y: int): void = x = x << y\n    proc `[]`*(x: int, n: int): bool = (x and (1 shl n)) != 0\n\n    proc pow*(a, n: int, m = INFL): int =\n        var\n            rev = 1\n            a = a\n            n = n\n        while n > 0:\n            if n % 2 != 0: rev = (rev * a) mod m\n            if n > 1: a = (a * a) mod m\n            n >>= 1\n        return rev\n    proc sqrt*(x: int): int =\n        assert(x >= 0)\n        result = int(sqrt(float64(x)))\n        while result * result > x: result -= 1\n        while (result+1) * (result+1) <= x: result += 1\n    proc chmax*[T](x: var T, y: T): bool = (if x < y: (x = y; return true;\n        ) return false)\n    proc chmin*[T](x: var T, y: T): bool = (if x > y: (x = y; return true;\n        ) return false)\n    proc `max=`*[T](x: var T, y: T) = x = max(x, y)\n    proc `min=`*[T](x: var T, y: T) = x = min(x, y)\n    proc at*(x: char, a = '0'): int = int(x) - int(a)\n    converter tofloat*(n: int): float = float(n)\n    iterator rangeiter*(start: int, ends: int, step: int): int =\n        var i = start\n        if step < 0:\n            while i > ends:\n                yield i\n                i += step\n        elif step > 0:\n            while i < ends:\n                yield i\n                i += step\n    iterator rangeiter*(ends: int): int = (for i in 0..<ends: yield i)\n    iterator rangeiter*(start: int, ends: int): int = (for i in\n            start..<ends: yield i)\n    proc Yes*(b: bool = true): void = print(if b: \"Yes\" else: \"No\")\n    proc No*(b: bool = true): void = Yes(not b)\n    proc YES_upper*(b: bool = true): void = print(if b: \"YES\" else: \"NO\")\n    proc NO_upper*(b: bool = true): void = Yes_upper(not b)\n    const DXY* = [(0, -1), (0, 1), (-1, 0), (1, 0)]\n    const DDXY* = [(1, -1), (1, 0), (1, 1), (0, -1), (0, 1), (-1, -1), (-1, 0),\n            (-1, 1)]\n    macro exit*(statement: untyped): untyped =\n        quote do:\n            `statement`\n            quit()\n    proc vector*[T](d1, : int, default: T = T(0)): seq[T] = newSeqWith(d1, default)\n    proc vv*[T](d1, d2: int, default: T = T(0)): seq[seq[T]] = newSeqWith(d1,\n            newSeqWith(d2, default))\n    proc vvv*[T](d1, d2, d3: int, default: T = T(0)): seq[seq[seq[\n            T]]] = newSeqWith(d1, newSeqWith(d2, newSeqWith(d3, default)))\n    proc vvvv*[T](d1, d2, d3, d4: int, default: T = T(0)): seq[seq[seq[seq[\n            T]]]] = newSeqWith(d1, newSeqWith(d2, newSeqWith(d3, newSeqWith(d4, default))))\n    proc vvvvv*[T](d1, d2, d3, d4, d5: int, default: T = T(0)): seq[seq[seq[seq[\n            seq[T]]]]] = newSeqWith(d1, newSeqWith(d2, newSeqWith(d3,\n            newSeqWith(d4, newSeqWith(d5, default)))))\n    proc vvvvvv*[T](d1, d2, d3, d4, d5, d6: int, default: T = T(0)): seq[seq[\n            seq[seq[seq[seq[T]]]]]] = newSeqWith(d1, newSeqWith(d2, newSeqWith(\n            d3, newSeqWith(d4, newSeqWith(d5, newSeqWith(d6, default))))))\n    discard\n"

ImportExpand "cplib/graph/graph.nim" <=== "when not declared CPLIB_GRAPH_GRAPH:\n    const CPLIB_GRAPH_GRAPH* = 1\n\n    type Graph*[T] = ref object of RootObj\n        edges*: seq[seq[(int, T)]]\n\n    type WeightedDirectedGraph*[T] = ref object of Graph[T]\n    type WeightedUnDirectedGraph*[T] = ref object of Graph[T]\n    type UnWeightedDirectedGraph* = ref object of Graph[int]\n    type UnWeightedUnDirectedGraph* = ref object of Graph[int]\n\n    type GraphTypes* = Graph or WeightedDirectedGraph or WeightedUnDirectedGraph or UnWeightedDirectedGraph or UnWeightedUnDirectedGraph\n\n    proc add_edge_impl[T](g: GraphTypes, u, v: int, cost: T, directed: bool) =\n        g.edges[u].add((v, cost))\n        if not directed: g.edges[v].add((u, cost))\n\n    #WeightedDirectedGraph\n    proc initWeightedDirectedGraph*(N: int, edgetype: typedesc = int): WeightedDirectedGraph[edgetype] =\n        result = WeightedDirectedGraph[edgetype](edges: newSeq[seq[(int, edgetype)]](N))\n    proc add_edge*[T](g: var WeightedDirectedGraph[T], u, v: int, cost: T) =\n        g.add_edge_impl(u, v, cost, true)\n\n    #WeightedUnDirectedGraph\n    proc initWeightedUnDirectedGraph*(N: int, edgetype: typedesc = int): WeightedUnDirectedGraph[edgetype] =\n        result = WeightedUnDirectedGraph[edgetype](edges: newSeq[seq[(int, edgetype)]](N))\n    proc add_edge*[T](g: var WeightedUnDirectedGraph[T], u, v: int, cost: T) =\n        g.add_edge_impl(u, v, cost, false)\n\n    #UnWeightedDirectedGraph\n    proc initUnWeightedDirectedGraph*(N: int): UnWeightedDirectedGraph =\n        result = UnWeightedDirectedGraph(edges: newSeq[seq[(int, int)]](N))\n    proc add_edge*(g: var UnWeightedDirectedGraph, u, v: int) =\n        g.add_edge_impl(u, v, 1, true)\n\n    #UnWeightedUnDirectedGraph\n    proc initUnWeightedUnDirectedGraph*(N: int): UnWeightedUnDirectedGraph =\n        result = UnWeightedUnDirectedGraph(edges: newSeq[seq[(int, int)]](N))\n    proc add_edge*(g: var UnWeightedUnDirectedGraph, u, v: int) =\n        g.add_edge_impl(u, v, 1, false)\n    discard\n"

ImportExpand "cplib/graph/dijkstra.nim" <=== "when not declared CPLIB_GRAPH_DIJKSTRA:\n    #[ import cplib/graph/graph ]#\n    import std/heapqueue\n    import algorithm\n    const CPLIB_GRAPH_DIJKSTRA* = 1\n    proc restore_dijkstra*[T](G: Graph[T], start: int, ZERO: T = 0, INF: T = int(3300300300300300491)): tuple[costs: seq[T], prev: seq[int]] =\n        var\n            queue = initHeapQueue[(T, int)]()\n            costs = newSeq[T](len(G.edges))\n            prev = newseq[int](len(G.edges))\n        costs.fill(INF)\n        prev.fill(-1)\n        queue.push((ZERO, start))\n        costs[start] = ZERO\n        while len(queue) != 0:\n            var (cost, i) = queue.pop()\n            if cost > costs[i]:\n                continue\n            for (j, c) in G.edges[i]:\n                var temp = costs[i] + c\n                if temp < costs[j]:\n                    prev[j] = i\n                    costs[j] = temp\n                    queue.push((temp, j))\n        return (costs, prev)\n    proc dijkstra*[T](G: Graph[T], start: int, ZERO: T = 0, INF: T = int(3300300300300300491)): seq[T] =\n        var costs, _ = restore_dijkstra(G, start, ZERO, INF)\n        return costs\n    proc restore_shortestpath_from_prev*(prev: seq[int], goal: int): seq[int] =\n        var i = goal\n        while i != -1:\n            result.add(i)\n            i = prev[i]\n        result = result.reversed()\n    proc shortest_path*[T](G: Graph[T], start: int, goal: int, ZERO: T = 0, INF: T = int(3300300300300300491)): tuple[path: seq[int], cost: int] =\n        var (costs, prev) = restore_dijkstra(G, start, ZERO, INF)\n        result.path = prev.restore_shortestpath_from_prev(goal)\n        result.cost = costs[goal]\n    discard\n"

# see https://github.com/zer0-star/Nim-ACL/tree/master/src/atcoder/mincostflow.nim
ImportExpand "atcoder/mincostflow.nim" <=== "when not declared ATCODER_MINCOSTFLOW_HPP:\n  const ATCODER_MINCOSTFLOW_HPP* = 1\n\n  import std/heapqueue\n  import std/algorithm\n  #[ import atcoder/internal_csr ]#\n  when not declared ATCODER_INTERNAL_CSR_HPP:\n    const ATCODER_INTERNAL_CSR_HPP* = 1\n  \n    type csr*[E] = object\n      start*: seq[int]\n      elist*: seq[E]\n    proc initCsr*[E](n:int, edges:seq[(int, E)]):csr[E] =\n      var start = newSeq[int](n + 1)\n      var elist = newSeq[E](edges.len)\n      for e in edges: start[e[0] + 1].inc\n      for i in 1..n: start[i] += start[i - 1]\n      var counter = start\n      for e in edges:\n        elist[counter[e[0]]] = e[1]\n        counter[e[0]].inc\n      return csr[E](start:start, elist:elist)\n    discard\n  #[ import atcoder/internal_queue ]#\n  when not declared ATCODER_INTERNAL_QUEUE_HPP:\n    const ATCODER_INTERNAL_QUEUE_HPP* = 1\n  \n    type simple_queue[T] = object\n      payload:seq[T]\n      pos:int\n    proc init_simple_queue*[T]():auto = simple_queue[T](payload:newSeq[T](), pos:0)\n  # TODO\n  #      void reserve(int n) { payload.reserve(n); }\n    proc len*[T](self:simple_queue[T]):int = self.payload.len - self.pos\n    proc empty*[T](self:simple_queue[T]):bool = self.pos == self.payload.len\n    proc push*[T](self:var simple_queue[T], t:T) = self.payload.add(t)\n    proc front*[T](self:simple_queue[T]):T = self.payload[self.pos]\n    proc clear*[T](self:var simple_queue[T]) =\n      self.payload.setLen(0)\n      self.pos = 0;\n    proc pop*[T](self:var simple_queue[T]) = self.pos.inc\n    discard\n  #[ import atcoder/internal_heap ]#\n  when not declared ATCODER_INTERNAL_HEAP:\n    const ATCODER_INTERNAL_HEAP* = 1\n    proc push_heap*[T](v: var openArray[T], p:Slice[int]) {.inline.} =\n      var i = p.b\n      while i > 0:\n        var p = (i - 1) shr 1\n        if v[p] < v[i]: swap v[p], v[i]\n        else: break\n        i = p\n    proc pop_heap*[T](v: var openArray[T], p:Slice[int]) {.inline.} =\n      swap v[0], v[p.b]\n      var p = p\n      p.b.dec\n      var i = 0\n      while true:\n        var (c0, c1) = (i * 2 + 1, i * 2 + 2)\n        if c1 in p:\n          if v[c1] > v[i]:\n            if v[c0] > v[c1]:\n              swap(v[i], v[c0])\n              i = c0\n            else:\n              swap(v[i], v[c1])\n              i = c1\n          elif v[c0] > v[i]:\n            swap(v[i], v[c0])\n            i = c0\n          else: break\n        elif c0 in p:\n          if v[c0] > v[i]:\n            swap(v[i], v[c0])\n            i = c0\n          else: break\n        else: break\n    discard\n\n  type MCFEdge*[Cap, Cost] = object\n    src*, dst*: int\n    cap*, flow*: Cap\n    cost*: Cost\n\n  type MCFInternalEdge[Cap, Cost] = object\n    dst, rev: int\n    cap: Cap\n    cost: Cost\n\n  type MCFGraph*[Cap, Cost] = object\n    n:int\n    edges:seq[MCFEdge[Cap, Cost]]\n  \n  proc initMCFGraph*[Cap, Cost](n:int):MCFGraph[Cap, Cost] = result.n = n\n  proc initMinCostFLow*[Cap, Cost](n:int):MCFGraph[Cap, Cost] = result.n = n\n\n  proc add_edge*[Cap, Cost](self: var MCFGraph[Cap, Cost], src, dst:int, cap:Cap, cost:Cost):int {.discardable.} =\n    assert src in 0..<self.n\n    assert dst in 0..<self.n\n    assert 0 <= cap\n    assert 0 <= cost\n    var m = self.edges.len\n    self.edges.add(MCFEdge[Cap, Cost](src:src, dst:dst, cap:cap, flow:0, cost:cost))\n    return m\n\n  proc get_edge*[Cap, Cost](self:MCFGraph[Cap, Cost], i:int): MCFEdge[Cap, Cost] =\n    let m = self.edges.len\n    assert i in 0..<m\n    return self.edges[i]\n\n  proc edges*[Cap, Cost](self:var MCFGraph[Cap, Cost]):seq[MCFEdge[Cap, Cost]] = self.edges\n  type MCFQ[Cost] = object\n    key:Cost\n    dst:int\n  proc `<`*[Cost](l, r:MCFQ[Cost]):bool = l.key > r.key\n\n  proc slope*[Cap, Cost](self: MCFGraph[Cap, Cost], g:var csr[MCFInternalEdge[Cap, Cost]], s, t:int, flow_limit:Cap):seq[tuple[cap:Cap, cost:Cost]] =\n    ## variants (C = maxcost):\n    ## -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0\n    ## reduced cost (= e.cost + dual[e.src] - dual[e.to]) >= 0 for all edge\n\n    ## dual_dist[i] = (dual[i], dist[i])\n    var\n      dual_dist = newSeq[tuple[dual, dist:Cost]](self.n)\n      prev_e = newSeq[int](self.n)\n      vis = newSeq[bool](self.n)\n      que_min = newSeq[int]()\n      que = newSeq[MCFQ[Cost]]()\n    proc dual_ref(g:csr[MCFInternalEdge[Cap, Cost]]):bool =\n      for i in 0..<self.n: dual_dist[i].dist = Cost.high\n      vis.fill(false)\n      que_min.setLen(0)\n      que.setLen(0)\n\n      # que[0..heap_r) was heapified\n      var heap_r = 0\n\n      dual_dist[s].dist = 0\n      que_min.add(s)\n      while que_min.len > 0 or que.len > 0:\n        var v:int\n        if que_min.len > 0:\n          v = que_min.pop()\n        else:\n          while heap_r < que.len:\n            heap_r.inc\n            que.push_heap(0 ..< heap_r)\n          v = que[0].dst\n          que.pop_heap(0 ..< que.len)\n          discard que.pop()\n          heap_r.dec\n        if vis[v]: continue\n        vis[v] = true\n        if v == t: break\n        ## dist[v] = shortest(s, v) + dual[s] - dual[v]\n        ## dist[v] >= 0 (all reduced cost are positive)\n        ## dist[v] <= (n-1)C\n        let (dual_v, dist_v) = dual_dist[v]\n        for i in g.start[v] ..< g.start[v + 1]:\n          let e = g.elist[i]\n          if e.cap == Cap(0): continue\n          ## |-dual[e.to] + dual[v]| <= (n-1)C\n          ## cost <= C - -(n-1)C + 0 = nC\n          let cost = e.cost - dual_dist[e.dst].dual + dual_v\n          if dual_dist[e.dst].dist - dist_v > cost:\n            let dist_to = dist_v + cost\n            dual_dist[e.dst].dist = dist_to\n            prev_e[e.dst] = e.rev\n            if dist_to == dist_v:\n              que_min.add(e.dst)\n            else:\n              que.add(MCFQ[Cost](key:dist_to, dst:e.dst))\n      if not vis[t]:\n        return false\n\n      for v in 0..<self.n:\n        if not vis[v]: continue\n        # dual[v] = dual[v] - dist[t] + dist[v]\n        #     = dual[v] - (shortest(s, t) + dual[s] - dual[t]) +\n        #     (shortest(s, v) + dual[s] - dual[v]) = - shortest(s,\n        #     t) + dual[t] + shortest(s, v) = shortest(s, v) -\n        #     shortest(s, t) >= 0 - (n-1)C\n        dual_dist[v].dual -= dual_dist[t].dist - dual_dist[v].dist\n      return true\n    var\n      flow:Cap = 0\n      cost:Cost = 0\n      prev_cost_per_flow:Cost = -1\n    result = @[(Cap(0), Cost(0))]\n    while flow < flow_limit:\n      if not g.dual_ref(): break\n      var c = flow_limit - flow\n      block:\n        var v = t\n        while v != s:\n          c = min(c, g.elist[g.elist[prev_e[v]].rev].cap)\n          v = g.elist[prev_e[v]].dst\n      block:\n        var v = t\n        while v != s:\n          var e = g.elist[prev_e[v]].addr\n          e[].cap += c\n          g.elist[e[].rev].cap -= c\n          v = g.elist[prev_e[v]].dst\n      let d = -dual_dist[s].dual\n      flow += c\n      cost += c * d\n      if prev_cost_per_flow == d:\n        discard result.pop()\n      result.add((flow, cost))\n      prev_cost_per_flow = d\n\n  proc slope*[Cap, Cost](self:var MCFGraph[Cap, Cost], s, t:int, flow_limit:Cap):seq[tuple[cap:Cap, cost:Cost]] =\n    assert s in 0..<self.n\n    assert t in 0..<self.n\n    assert s != t\n\n    let m = self.edges.len\n    var edge_idx = newSeq[int](m)\n\n    var g = block:\n      var degree = newSeq[int](self.n)\n      var redge_idx = newSeq[int](m)\n      var elist = newSeqOfCap[(int, MCFInternalEdge[Cap, Cost])](2 * m)\n      for i in 0..<m:\n        let e = self.edges[i]\n        edge_idx[i] = degree[e.src]\n        degree[e.src].inc\n        redge_idx[i] = degree[e.dst]\n        degree[e.dst].inc\n        elist.add((e.src, MCFInternalEdge[Cap, Cost](dst: e.dst, rev: -1, cap:e.cap - e.flow, cost:e.cost)))\n        elist.add((e.dst, MCFInternalEdge[Cap, Cost](dst: e.src, rev: -1, cap:e.flow, cost: -e.cost)))\n      var g = initCSR[MCFInternalEdge[Cap, Cost]](self.n, elist)\n      for i in 0..<m:\n        let e = self.edges[i]\n        edge_idx[i] += g.start[e.src]\n        redge_idx[i] += g.start[e.dst]\n        g.elist[edge_idx[i]].rev = redge_idx[i];\n        g.elist[redge_idx[i]].rev = edge_idx[i];\n      g\n\n    result = self.slope(g, s, t, flow_limit)\n\n    for i in 0..<m:\n      let e = g.elist[edge_idx[i]]\n      self.edges[i].flow = self.edges[i].cap - e.cap\n  proc flow*[Cap, Cost](self:var MCFGraph[Cap, Cost], s, t:int, flow_limit:Cap):tuple[cap:Cap, cost:Cost] = self.slope(s, t, flow_limit)[^1]\n  proc flow*[Cap, Cost](self:var MCFGraph[Cap, Cost], s, t:int):tuple[cap:Cap, cost:Cost] = self.flow(s, t, Cap.high)\n  proc slope*[Cap, Cost](self:var MCFGraph[Cap, Cost], s, t:int):seq[tuple[cap:Cap, cost:Cost]] = self.slope(s, t, Cap.high)\n\n  #### chaemon added\n  proc reset*[Cap, Cost](self: var MCFGraph[Cap, Cost]) =\n    for e in self.edges.mitems:\n      e.flow = 0\n\n  proc set_edge*[Cap, Cost](self: var MCFGraph[Cap, Cost], i:int, cap:Cap, cost:Cost) =\n    assert 0 <= cap\n    assert 0 <= cost\n    var m = self.edges.len\n    assert i in 0 ..< m\n    edges[i].cap = cap\n    edges[i].cost = cost\n  discard\n"


var k,n,m = input(int)
var a = input(int, k)
var b = input(int, n)
var g = initMCFGraph[int,int](n+k+2)
var gd = initWeightedUnDirectedGraph(n, int)
for i in 0..<m:
    var u,v = input(int)-1
    var d = input(int)
    gd.add_edge(u,v,d)
var d = newSeq[seq[int]](0)
for i in 0..<n:
    var (costs, prv) = gd.restore_dijkstra(i)
    d.add(costs)
    # debug(costs)
# var mx = d.mapIt(it.max).max
var s = n+k
var t = s+1
for i in 0..<k: g.add_edge(s, i, 1, 0)
for i in 0..<n: g.add_edge(i+k, t, b[i], 0)
for i in 0..<k:
    for j in 0..<n:
        g.add_edge(i, j+k, 1, d[a[i]-1][j])
var (f, c) = g.flow(s, t)
# for e in g.edges: echo e
# debug(f)
print(c)
0