結果
問題 | No.3079 アルベド |
ユーザー | hiro1729 |
提出日時 | 2023-12-30 10:39:23 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 268 ms / 2,000 ms |
コード長 | 2,643 bytes |
コンパイル時間 | 448 ms |
コンパイル使用メモリ | 82,524 KB |
実行使用メモリ | 79,108 KB |
最終ジャッジ日時 | 2024-09-27 16:39:54 |
合計ジャッジ時間 | 3,729 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 111 ms
78,376 KB |
testcase_01 | AC | 268 ms
78,776 KB |
testcase_02 | AC | 194 ms
78,664 KB |
testcase_03 | AC | 159 ms
78,688 KB |
testcase_04 | AC | 226 ms
78,824 KB |
testcase_05 | AC | 184 ms
78,772 KB |
testcase_06 | AC | 209 ms
78,696 KB |
testcase_07 | AC | 108 ms
78,656 KB |
testcase_08 | AC | 118 ms
78,768 KB |
testcase_09 | AC | 183 ms
79,108 KB |
ソースコード
from math import gcd, isqrt # N≦2^64で素数判定 def is_prime(N: int) -> bool: if N <= 1: return False if N == 2: return True if N & 1 == 0: return False s = 0 d = N - 1 while d & 1 == 0: s += 1 d >>= 1 for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]: if a % N == 0: return True x = pow(a, d, N) if x != 1: t = 0 while t < s and x < N - 1: t += 1 x = x * x % N if t == s: return False return True # N以下の最大の素数を返す def biggest_prime(N: int) -> int: while not is_prime(N): N -= 1 return N # N以上の最小の素数を返す def smallest_prime(N: int) -> int: while not is_prime(N): N += 1 return N # エラトステネスの篩 [1, N] def Eratosthenes_Sieve(N: int) -> list: if N < 2: return [] p = [True] * (N + 1) p[0] = p[1] = False for i in range(2, N + 1): if i * i > N: break if p[i]: for j in range(2 * i, N + 1, i): p[j] = False return p # エラトステネスの区間篩 [A, B] def Eratosthenes_Sieve2(A: int, B: int) -> list: p = [True] * (B - A + 1) for i in range(2, B + 1): if i * i > B: break if i < A: for j in range((A + i - 1) // i * i, B + 1, i): p[j - A] = False elif p[i - A]: for j in range(2 * i, B + 1, i): p[j - A] = False return p # 約数(ソートする) def divisor(N: int) -> list: d = [] d2 = [] for i in range(1, N + 1): if i * i > N: break if N % i == 0: d.append(i) if i * i < N: d2.append(N // i) return d + d2[::-1] # 素因数分解 def factorize(N: int) -> list: c = 0 while N & 1 == 0: c += 1 N >>= 1 ans = [2] * c while N > 1: n = N while not is_prime(n): m = int(n ** 0.125) + 1 for c in range(1, n): y = 0 g = 1 q = 1 r = 1 while g == 1: x = y for _ in range(r >> 1, (3 * r) >> 2): y = (y * y + c) % n for k in range((3 * r) >> 2, r, m): ys = y for _ in range(min(m, r - k)): y = (y * y + c) % n q = q * (x - y) % n g = gcd(q, n) if g != 1: break r <<= 1 if g == n: g = 1 y = ys while g == 1: y = (y * y + c) % n g = gcd(x - y, n) if g != n: break n = g c = 0 while N % n == 0: c += 1 N //= n ans += [n] * c ans.sort() return ans # ⌊N/1⌋...⌊N/N⌋をソートして返す def quotients(N: int) -> list: s = isqrt(N) ans = [N // i for i in range(1, s + 1)] ans += list(range(s - (ans[-1] == s), 0, -1)) ans.reverse() return ans e = Eratosthenes_Sieve(100000) for i in range(100000): e[i + 1] += e[i] for _ in range(int(input())): print(e[int(input())])