結果
問題 | No.2544 Many RMQ Problems |
ユーザー | Misuki |
提出日時 | 2023-12-31 18:11:13 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 210 ms / 2,000 ms |
コード長 | 7,189 bytes |
コンパイル時間 | 2,907 ms |
コンパイル使用メモリ | 209,768 KB |
実行使用メモリ | 39,220 KB |
最終ジャッジ日時 | 2024-09-27 17:08:08 |
合計ジャッジ時間 | 6,823 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 14 ms
11,332 KB |
testcase_01 | AC | 14 ms
11,212 KB |
testcase_02 | AC | 13 ms
11,340 KB |
testcase_03 | AC | 206 ms
39,096 KB |
testcase_04 | AC | 205 ms
37,740 KB |
testcase_05 | AC | 203 ms
36,840 KB |
testcase_06 | AC | 204 ms
38,192 KB |
testcase_07 | AC | 104 ms
24,208 KB |
testcase_08 | AC | 57 ms
17,116 KB |
testcase_09 | AC | 14 ms
11,208 KB |
testcase_10 | AC | 13 ms
11,332 KB |
testcase_11 | AC | 14 ms
11,204 KB |
testcase_12 | AC | 14 ms
11,208 KB |
testcase_13 | AC | 13 ms
11,208 KB |
testcase_14 | AC | 14 ms
11,208 KB |
testcase_15 | AC | 13 ms
11,336 KB |
testcase_16 | AC | 14 ms
11,336 KB |
testcase_17 | AC | 14 ms
11,204 KB |
testcase_18 | AC | 13 ms
11,208 KB |
testcase_19 | AC | 210 ms
39,092 KB |
testcase_20 | AC | 205 ms
39,220 KB |
testcase_21 | AC | 205 ms
39,092 KB |
testcase_22 | AC | 204 ms
39,092 KB |
testcase_23 | AC | 205 ms
39,220 KB |
testcase_24 | AC | 14 ms
11,336 KB |
testcase_25 | AC | 14 ms
11,204 KB |
testcase_26 | AC | 207 ms
39,096 KB |
testcase_27 | AC | 14 ms
11,336 KB |
testcase_28 | AC | 209 ms
39,092 KB |
ソースコード
#pragma GCC optimize("O2") #include <algorithm> #include <array> #include <bit> #include <bitset> #include <cassert> #include <cctype> #include <cfenv> #include <cfloat> #include <chrono> #include <cinttypes> #include <climits> #include <cmath> #include <compare> #include <complex> #include <concepts> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <initializer_list> #include <iomanip> #include <ios> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> #include <map> #include <memory> #include <new> #include <numbers> #include <numeric> #include <ostream> #include <queue> #include <random> #include <ranges> #include <set> #include <span> #include <sstream> #include <stack> #include <streambuf> #include <string> #include <tuple> #include <type_traits> #include <variant> //#define int ll #define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1) #define INT128_MIN (-INT128_MAX - 1) namespace R = std::ranges; namespace V = std::views; using namespace std; using ll = long long; using ull = unsigned long long; using pii = pair<int, int>; using pll = pair<long long, long long>; using tiii = tuple<int, int, int>; using ldb = long double; //#define double ldb template<class T> ostream& operator<<(ostream& os, const pair<T, T> pr) { return os << pr.first << ' ' << pr.second; } template<class T, size_t N> ostream& operator<<(ostream& os, const array<T, N> &arr) { for(const T &X : arr) os << X << ' '; return os; } template<class T> ostream& operator<<(ostream& os, const vector<T> &vec) { for(const T &X : vec) os << X << ' '; return os; } /** * template name: MontgomeryModInt * author: Misuki * reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10 * last update: 2023/11/30 * note: mod should be a prime less than 2^30. */ template<uint32_t mod> struct MontgomeryModInt { using mint = MontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 res = 1, base = mod; for(i32 i = 0; i < 31; i++) res *= base, base *= base; return -res; } static constexpr u32 get_mod() { return mod; } static constexpr u32 n2 = -u64(mod) % mod; //2^64 % mod static constexpr u32 r = get_r(); //-P^{-1} % 2^32 u32 a; static u32 reduce(const u64 &b) { return (b + u64(u32(b) * r) * mod) >> 32; } static u32 transform(const u64 &b) { return reduce(u64(b) * n2); } MontgomeryModInt() : a(0) {} MontgomeryModInt(const int64_t &b) : a(transform(b % mod + mod)) {} mint pow(u64 k) const { mint res(1), base(*this); while(k) { if (k & 1) res *= base; base *= base, k >>= 1; } return res; } mint inverse() const { return (*this).pow(mod - 2); } u32 get() const { u32 res = reduce(a); return res >= mod ? res - mod : res; } mint& operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint& operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } mint& operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } mint& operator/=(const mint &b) { a = reduce(u64(a) * b.inverse().a); return *this; } mint operator-() { return mint() - mint(*this); } bool operator==(mint b) { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(mint b) { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } friend mint operator+(mint a, mint b) { return a += b; } friend mint operator-(mint a, mint b) { return a -= b; } friend mint operator*(mint a, mint b) { return a *= b; } friend mint operator/(mint a, mint b) { return a /= b; } friend ostream& operator<<(ostream& os, const mint& b) { return os << b.get(); } friend istream& operator>>(istream& is, mint& b) { int64_t val; is >> val; b = mint(val); return is; } }; using mint = MontgomeryModInt<998244353>; /** * template name: comb * author: Misuki * last update: 2023/01/22 * note: remember to call init() before using it. */ const int MAX = 1000001; mint fac[MAX], facInv[MAX]; void init() { fac[0] = 1; for(int i = 1; i < MAX; i++) fac[i] = fac[i - 1] * i; facInv[MAX - 1] = 1 / fac[MAX - 1]; for(int i = MAX - 2; i >= 0; i--) facInv[i] = facInv[i + 1] * (i + 1); } mint C(int a, int b) { if (b < 0 or a < b) return 0; else return fac[a] * facInv[b] * facInv[a - b]; } /** * template name: NTT * reference: https://judge.yosupo.jp/submission/69896 * last update: 2023/12/04 * remark: MOD = 2^K * C + 1, R is a primitive root modulo MOD * remark: a.size() <= 2^K must be satisfied * some common modulo: 998244353 = 2^23 * 119 + 1, R = 3 * 469762049 = 2^26 * 7 + 1, R = 3 * 1224736769 = 2^24 * 73 + 1, R = 3 * verify: Library Checker - Convolution */ template<int32_t k, int32_t c, int32_t r, class Mint> struct NTT { using u32 = uint32_t; static constexpr u32 mod = (1 << k) * c + 1; static constexpr u32 get_mod() { return mod; } static void ntt(vector<Mint> &a, bool inverse) { static array<Mint, 30> w, w_inv; if (w[0] == 0) { Mint root = 2; while(root.pow((mod - 1) / 2) == 1) root += 1; for(int i = 0; i < 30; i++) w[i] = -(root.pow((mod - 1) >> (i + 2))), w_inv[i] = 1 / w[i]; } int n = ssize(a); if (not inverse) { for(int m = n; m >>= 1; ) { Mint ww = 1; for(int s = 0, l = 0; s < n; s += 2 * m) { for(int i = s, j = s + m; i < s + m; i++, j++) { Mint x = a[i], y = a[j] * ww; a[i] = x + y, a[j] = x - y; } ww *= w[__builtin_ctz(++l)]; } } } else { for(int m = 1; m < n; m *= 2) { Mint ww = 1; for(int s = 0, l = 0; s < n; s += 2 * m) { for(int i = s, j = s + m; i < s + m; i++, j++) { Mint x = a[i], y = a[j]; a[i] = x + y, a[j] = (x - y) * ww; } ww *= w_inv[__builtin_ctz(++l)]; } } Mint inv = 1 / Mint(n); for(Mint &x : a) x *= inv; } } vector<Mint> conv(vector<Mint> a, vector<Mint> b) { int sz = ssize(a) + ssize(b) - 1; int n = bit_ceil((u32)sz); a.resize(n, 0); ntt(a, false); b.resize(n, 0); ntt(b, false); for(int i = 0; i < n; i++) a[i] *= b[i]; ntt(a, true); a.resize(sz); return a; } }; NTT<23, 119, 3, mint> ntt; signed main() { ios::sync_with_stdio(false), cin.tie(NULL); init(); int n, q; cin >> n >> q; vector<mint> A(n + 1), B(n + 1); for(int i = 0; i <= n; i++) A[i] = fac[i], B[i] = facInv[n - i]; A = ntt.conv(A, B); mint ans = 0; for(int l = 1; l <= n; l++) ans += (n - l + 1) * fac[n - l] * A[l + n]; cout << ans * mint((ll)n * (n + 1) / 2).pow(q - 1) * q << '\n'; return 0; }