結果

問題 No.2544 Many RMQ Problems
ユーザー MisukiMisuki
提出日時 2023-12-31 18:11:13
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 210 ms / 2,000 ms
コード長 7,189 bytes
コンパイル時間 2,907 ms
コンパイル使用メモリ 209,768 KB
実行使用メモリ 39,220 KB
最終ジャッジ日時 2024-09-27 17:08:08
合計ジャッジ時間 6,823 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 14 ms
11,332 KB
testcase_01 AC 14 ms
11,212 KB
testcase_02 AC 13 ms
11,340 KB
testcase_03 AC 206 ms
39,096 KB
testcase_04 AC 205 ms
37,740 KB
testcase_05 AC 203 ms
36,840 KB
testcase_06 AC 204 ms
38,192 KB
testcase_07 AC 104 ms
24,208 KB
testcase_08 AC 57 ms
17,116 KB
testcase_09 AC 14 ms
11,208 KB
testcase_10 AC 13 ms
11,332 KB
testcase_11 AC 14 ms
11,204 KB
testcase_12 AC 14 ms
11,208 KB
testcase_13 AC 13 ms
11,208 KB
testcase_14 AC 14 ms
11,208 KB
testcase_15 AC 13 ms
11,336 KB
testcase_16 AC 14 ms
11,336 KB
testcase_17 AC 14 ms
11,204 KB
testcase_18 AC 13 ms
11,208 KB
testcase_19 AC 210 ms
39,092 KB
testcase_20 AC 205 ms
39,220 KB
testcase_21 AC 205 ms
39,092 KB
testcase_22 AC 204 ms
39,092 KB
testcase_23 AC 205 ms
39,220 KB
testcase_24 AC 14 ms
11,336 KB
testcase_25 AC 14 ms
11,204 KB
testcase_26 AC 207 ms
39,096 KB
testcase_27 AC 14 ms
11,336 KB
testcase_28 AC 209 ms
39,092 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize("O2")
#include <algorithm>
#include <array>
#include <bit>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <compare>
#include <complex>
#include <concepts>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numbers>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <ranges>
#include <set>
#include <span>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <variant>

//#define int ll
#define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1)
#define INT128_MIN (-INT128_MAX - 1)

namespace R = std::ranges;
namespace V = std::views;

using namespace std;

using ll = long long;
using ull = unsigned long long;
using pii = pair<int, int>;
using pll = pair<long long, long long>;
using tiii = tuple<int, int, int>;
using ldb = long double;
//#define double ldb

template<class T>
ostream& operator<<(ostream& os, const pair<T, T> pr) {
  return os << pr.first << ' ' << pr.second;
}
template<class T, size_t N>
ostream& operator<<(ostream& os, const array<T, N> &arr) {
  for(const T &X : arr)
    os << X << ' ';
  return os;
}
template<class T>
ostream& operator<<(ostream& os, const vector<T> &vec) {
  for(const T &X : vec)
    os << X << ' ';
  return os;
}

/**
 * template name: MontgomeryModInt
 * author: Misuki
 * reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10
 * last update: 2023/11/30
 * note: mod should be a prime less than 2^30.
 */

template<uint32_t mod>
struct MontgomeryModInt {
  using mint = MontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 res = 1, base = mod;
    for(i32 i = 0; i < 31; i++)
      res *= base, base *= base;
    return -res;
  }

  static constexpr u32 get_mod() {
    return mod;
  }

  static constexpr u32 n2 = -u64(mod) % mod; //2^64 % mod
  static constexpr u32 r = get_r(); //-P^{-1} % 2^32

  u32 a;

  static u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * r) * mod) >> 32;
  }

  static u32 transform(const u64 &b) {
    return reduce(u64(b) * n2);
  }

  MontgomeryModInt() : a(0) {}
  MontgomeryModInt(const int64_t &b) 
    : a(transform(b % mod + mod)) {}

  mint pow(u64 k) const {
    mint res(1), base(*this);
    while(k) {
      if (k & 1) 
        res *= base;
      base *= base, k >>= 1;
    }
    return res;
  }

  mint inverse() const { return (*this).pow(mod - 2); }

  u32 get() const {
    u32 res = reduce(a);
    return res >= mod ? res - mod : res;
  }

  mint& operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  mint& operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  mint& operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  mint& operator/=(const mint &b) {
    a = reduce(u64(a) * b.inverse().a);
    return *this;
  }

  mint operator-() { return mint() - mint(*this); }
  bool operator==(mint b) {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  bool operator!=(mint b) {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }

  friend mint operator+(mint a, mint b) { return a += b; }
  friend mint operator-(mint a, mint b) { return a -= b; }
  friend mint operator*(mint a, mint b) { return a *= b; }
  friend mint operator/(mint a, mint b) { return a /= b; }

  friend ostream& operator<<(ostream& os, const mint& b) {
    return os << b.get();
  }
  friend istream& operator>>(istream& is, mint& b) {
    int64_t val;
    is >> val;
    b = mint(val);
    return is;
  }
};

using mint = MontgomeryModInt<998244353>;

/**
 * template name: comb
 * author: Misuki
 * last update: 2023/01/22
 * note: remember to call init() before using it.
 */

const int MAX = 1000001;
mint fac[MAX], facInv[MAX];
void init() {
  fac[0] = 1;
  for(int i = 1; i < MAX; i++)
    fac[i] = fac[i - 1] * i;
  facInv[MAX - 1] = 1 / fac[MAX - 1];
  for(int i = MAX - 2; i >= 0; i--)
    facInv[i] = facInv[i + 1] * (i + 1);
}

mint C(int a, int b) {
  if (b < 0 or a < b)
    return 0;
  else
    return fac[a] * facInv[b] * facInv[a - b];
}

/**
 * template name: NTT
 * reference: https://judge.yosupo.jp/submission/69896
 * last update: 2023/12/04
 * remark: MOD = 2^K * C + 1, R is a primitive root modulo MOD
 * remark: a.size() <= 2^K must be satisfied
 * some common modulo: 998244353  = 2^23 * 119 + 1, R = 3
 *                     469762049  = 2^26 * 7   + 1, R = 3
 *                     1224736769 = 2^24 * 73  + 1, R = 3
 * verify: Library Checker - Convolution
 */

template<int32_t k, int32_t c, int32_t r, class Mint>
struct NTT {

  using u32 = uint32_t;
  static constexpr u32 mod = (1 << k) * c + 1;
  static constexpr u32 get_mod() { return mod; }

  static void ntt(vector<Mint> &a, bool inverse) {
    static array<Mint, 30> w, w_inv;
    if (w[0] == 0) {
      Mint root = 2;
      while(root.pow((mod - 1) / 2) == 1) root += 1;
      for(int i = 0; i < 30; i++)
        w[i] = -(root.pow((mod - 1) >> (i + 2))), w_inv[i] = 1 / w[i];
    }
    int n = ssize(a);
    if (not inverse) {
      for(int m = n; m >>= 1; ) {
        Mint ww = 1;
        for(int s = 0, l = 0; s < n; s += 2 * m) {
          for(int i = s, j = s + m; i < s + m; i++, j++) {
            Mint x = a[i], y = a[j] * ww;
            a[i] = x + y, a[j] = x - y;
          }
          ww *= w[__builtin_ctz(++l)];
        }
      }
    } else {
      for(int m = 1; m < n; m *= 2) {
        Mint ww = 1;
        for(int s = 0, l = 0; s < n; s += 2 * m) {
          for(int i = s, j = s + m; i < s + m; i++, j++) {
            Mint x = a[i], y = a[j];
            a[i] = x + y, a[j] = (x - y) * ww;
          }
          ww *= w_inv[__builtin_ctz(++l)];
        }
      }
      Mint inv = 1 / Mint(n);
      for(Mint &x : a) x *= inv;
    }
  }

  vector<Mint> conv(vector<Mint> a, vector<Mint> b) {
    int sz = ssize(a) + ssize(b) - 1;
    int n = bit_ceil((u32)sz);

    a.resize(n, 0);
    ntt(a, false);
    b.resize(n, 0);
    ntt(b, false);

    for(int i = 0; i < n; i++)
      a[i] *= b[i];

    ntt(a, true);

    a.resize(sz);

    return a;
  }
};

NTT<23, 119, 3, mint> ntt;

signed main() {
  ios::sync_with_stdio(false), cin.tie(NULL);

  init();

  int n, q; cin >> n >> q;

  vector<mint> A(n + 1), B(n + 1);
  for(int i = 0; i <= n; i++)
    A[i] = fac[i], B[i] = facInv[n - i];

  A = ntt.conv(A, B);

  mint ans = 0;
  for(int l = 1; l <= n; l++)
    ans += (n - l + 1) * fac[n - l] * A[l + n];

  cout << ans * mint((ll)n * (n + 1) / 2).pow(q - 1) * q << '\n';

  return 0;
}
0