結果
問題 | No.186 中華風 (Easy) |
ユーザー | pred |
提出日時 | 2024-01-02 16:29:27 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 6,827 bytes |
コンパイル時間 | 2,476 ms |
コンパイル使用メモリ | 211,708 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-27 17:47:42 |
合計ジャッジ時間 | 3,294 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 3 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | AC | 2 ms
6,944 KB |
testcase_16 | AC | 2 ms
6,940 KB |
testcase_17 | AC | 2 ms
6,944 KB |
testcase_18 | AC | 2 ms
6,940 KB |
testcase_19 | AC | 2 ms
6,944 KB |
testcase_20 | AC | 2 ms
6,940 KB |
testcase_21 | AC | 2 ms
6,944 KB |
testcase_22 | AC | 2 ms
6,944 KB |
ソースコード
#include <bits/stdc++.h> #include <utility> /* class modint * Constructor: modint(mod, val) * Update: 20240101 */ class modint{ long long mod; static std::map<long long, std::vector<long long>> inverse_table; public: long long val; modint(): mod(-1), val(0){} template <typename U, std::enable_if_t<std::is_integral<U>::value, std::nullptr_t> = nullptr> modint(U m){mod = m; val = 0;} template <typename U, typename T, std::enable_if_t<std::is_integral<T>::value && std::is_integral<U>::value, std::nullptr_t> = nullptr> modint(U m, T x){mod = m; val = (long long)x % mod; if(val < 0) val += mod;} long long m() const{return this->mod;} modint operator+() const{return *this;} modint operator-() const{return modint(mod, this->val == 0 ? 0 : mod - this->val);} modint& operator++(){val++; if(val == mod) val = 0; return *this;} modint& operator--(){if(val == 0) val = mod; val--; return *this;} modint operator++(int){modint temp = *this; ++*this; return temp;} modint operator--(int){modint temp = *this; --*this; return temp;} template <typename U, std::enable_if_t<std::is_integral<U>::value, std::nullptr_t> = nullptr> modint& operator+=(const U &x){return *this += modint(mod, x);} modint& operator+=(const modint &x){assert(this->mod == x.mod); val += x.val; if(val >= mod) val -= mod; return *this;} template <typename U, std::enable_if_t<std::is_integral<U>::value, std::nullptr_t> = nullptr> modint& operator-=(const U &x){return *this -= modint(mod, x);} modint& operator-=(const modint &x){assert(this->mod == x.mod); val -= x.val; if(val < 0) val += mod; return *this;} template <typename U, std::enable_if_t<std::is_integral<U>::value, std::nullptr_t> = nullptr> modint& operator*=(const U &x){return *this *= modint(mod, x);} modint& operator*=(const modint &x){assert(this->mod == x.mod); val = val * x.val % mod; return *this;} template <typename U, std::enable_if_t<std::is_integral<U>::value, std::nullptr_t> = nullptr> modint& operator/=(const U &x){return *this /= modint(mod, x);} modint& operator/=(const modint &x){assert(this->mod == x.mod); *this *= x.inverse(); return *this;} template <typename U, std::enable_if_t<std::is_integral<U>::value, std::nullptr_t> = nullptr> friend modint operator+(const modint &x, const U &y){return modint(x) += y;} template <typename U, std::enable_if_t<std::is_integral<U>::value, std::nullptr_t> = nullptr> friend modint operator+(const U &x, const modint &y){return modint(y.mod, x) += y;} friend modint operator+(const modint &x, const modint &y){return modint(x) += y;} template <typename U, std::enable_if_t<std::is_integral<U>::value, std::nullptr_t> = nullptr> friend modint operator-(const modint &x, const U &y){return modint(x) -= y;} template <typename U, std::enable_if_t<std::is_integral<U>::value, std::nullptr_t> = nullptr> friend modint operator-(const U &x, const modint &y){return modint(y.mod, x) -= y;} friend modint operator-(const modint &x, const modint &y){return modint(x) -= y;} template <typename U, std::enable_if_t<std::is_integral<U>::value, std::nullptr_t> = nullptr> friend modint operator*(const modint &x, const U &y){return modint(x) *= y;} template <typename U, std::enable_if_t<std::is_integral<U>::value, std::nullptr_t> = nullptr> friend modint operator*(const U &x, const modint &y){return modint(y.mod, x) *= y;} friend modint operator*(const modint &x, const modint &y){return modint(x) *= y;} template <typename U, std::enable_if_t<std::is_integral<U>::value, std::nullptr_t> = nullptr> friend modint operator/(const modint &x, const U &y){return modint(x) /= y;} template <typename U, std::enable_if_t<std::is_integral<U>::value, std::nullptr_t> = nullptr> friend modint operator/(const U &x, const modint &y){return modint(y.mod, x) /= y;} friend modint operator/(const modint &x, const modint &y){return modint(x) /= y;} //Require: gcd(val, mod) == 1 friend modint inverse(const modint &x){return x.inverse();} //Require: gcd(val, mod) == 1 modint inverse() const{ long long r = val, s = mod, a = 1, b = 0, c = 0, d = 1, k; while(s){k = r / s, a -= k * c, b -= k * d, r -= k * s, std::swap(a, c), std::swap(b, d), std::swap(r, s);} return modint(mod, a); } modint inverse_from_list() const{ if(inverse_table[mod].size() > val) return modint(mod, inverse_table[mod][val]); else return this->inverse(); } static void make_inverse_list(long long mod, long long max_base){ assert(max_base > 0); auto &v = inverse_table[mod]; if(v.size() > max_base) return; int i = (v.size() > 2 ? v.size() : 2); v.resize(max_base + 1, 0); v[1] = 1; for(; i <= max_base; i++) v[i] = mod - v[mod % i] * (mod / i) % mod; return; } friend modint power(const modint &x, long long exp){return x.power(exp);} modint power(long long exp) const{ modint res(mod, 1), temp(mod, val); while(exp){if(exp & 1) res *= val; temp *= temp; exp >>= 1;} return res; } friend bool operator==(const modint &x, const modint &y){return (x.val == y.val) && (x.mod == y.mod);} friend bool operator!=(const modint &x, const modint &y){return !(x == y);} friend std::istream& operator>>(std::istream &is, modint &x){is >> x.val >> x.mod; return is;} friend std::ostream& operator<<(std::ostream &os, const modint &x){os << x.val; return os;} }; std::map<long long, std::vector<long long>> modint::inverse_table; /* Chinese Remainder Theorem * verified by yukicoder #186 * Update: 20240102 */ modint crt(std::vector<modint> vec){ modint res = vec[0]; auto extgcd = [](long long r, long long s) -> std::tuple<long long, long long, long long> { bool rev = false; if(s < r){ std::swap(r, s); rev = true;} long long a = 1, b = 0, c = 0, d = 1, k; while(s){k = r / s; a -= k * c; b -= k * d; r -= k * s; std::swap(a, c); std::swap(b, d); std::swap(r, s);} if(rev) return std::make_tuple(b, a, r); else return std::make_tuple(a, b, r); }; for(int i = 1; i < vec.size(); i++){ auto [rx, ry, g] = extgcd(res.m(), vec[i].m()); if((res.val - vec[i].val) % g != 0) return modint(); long long l = vec[i].m() / g; res = modint(res.m() * l, res.val + ((vec[i].val - res.val) / g) % l * rx % l * res.m()); } return res; } int main(){ std::vector<modint> v(3); for(auto &vi: v) std::cin >> vi; auto res = crt(v); if(res.m() == -1) std::cout << -1 << "\n"; else if(res.val == 0) std::cout << res.m() << "\n"; else std::cout << res.val << "\n"; }