結果
問題 | No.318 学学学学学 |
ユーザー | mamenta |
提出日時 | 2024-01-03 19:32:11 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 184 ms / 2,000 ms |
コード長 | 19,200 bytes |
コンパイル時間 | 2,702 ms |
コンパイル使用メモリ | 206,200 KB |
実行使用メモリ | 56,876 KB |
最終ジャッジ日時 | 2024-09-27 18:27:52 |
合計ジャッジ時間 | 6,581 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 25 ms
45,372 KB |
testcase_01 | AC | 37 ms
46,464 KB |
testcase_02 | AC | 42 ms
46,892 KB |
testcase_03 | AC | 33 ms
45,972 KB |
testcase_04 | AC | 38 ms
46,720 KB |
testcase_05 | AC | 181 ms
56,876 KB |
testcase_06 | AC | 152 ms
51,532 KB |
testcase_07 | AC | 131 ms
50,860 KB |
testcase_08 | AC | 107 ms
49,596 KB |
testcase_09 | AC | 87 ms
48,628 KB |
testcase_10 | AC | 62 ms
47,228 KB |
testcase_11 | AC | 184 ms
56,812 KB |
testcase_12 | AC | 123 ms
51,404 KB |
testcase_13 | AC | 100 ms
50,004 KB |
testcase_14 | AC | 86 ms
49,060 KB |
testcase_15 | AC | 72 ms
48,120 KB |
testcase_16 | AC | 54 ms
46,960 KB |
testcase_17 | AC | 104 ms
51,404 KB |
testcase_18 | AC | 91 ms
51,532 KB |
testcase_19 | AC | 102 ms
51,528 KB |
testcase_20 | AC | 52 ms
47,112 KB |
testcase_21 | AC | 15 ms
44,192 KB |
testcase_22 | AC | 15 ms
44,140 KB |
testcase_23 | AC | 15 ms
44,152 KB |
testcase_24 | AC | 15 ms
44,140 KB |
testcase_25 | AC | 16 ms
44,144 KB |
testcase_26 | AC | 15 ms
44,160 KB |
testcase_27 | AC | 15 ms
44,288 KB |
testcase_28 | AC | 15 ms
44,088 KB |
ソースコード
#include<iostream> #include<functional> #include<vector> #include<set> #include<queue> #include<map> #include<algorithm> #include<numeric> #include<cmath> #include<cstring> #include<bitset> #include<iomanip> #include<random> #include<fstream> #include<complex> #include<time.h> #include<stack> #include<cassert> using namespace std; #define endl "\n" #define ll long long #define ch char #define vec vector #define vll vector<ll> #define sll set<ll> #define pll pair<ll,ll> #define mkp make_pair #define mll map<ll,ll> #define puf push_front #define pub push_back #define pof pop_front() #define pob pop_back() #define em empty() #define fi first #define se second #define fr front() #define ba back() #define be begin() #define rbe rbegin() #define en end() #define ren rend() #define all(x) x.begin(),x.end() #define rall(x) x.rbegin(),x.rend() #define fo(i,x,y) for(ll i=x;i<=y;++i) #define fa(i,v) for(auto &i:v) #define re return #define sz size() #define so(v) sort(all(v)) #define pop_count(x) __builtin_popcount(x) #define rso(v) sort(rall(v)) #define rev(v) reverse(all(v)) #define i(x) for(ll i=0;i<x;++i) #define j(x) for(ll j=0;j<x;++j) #define k(x) for(ll k=0;k<x;++k) #define xx(k) while(k--) #define wh(x) while(x) #define st string //10^x 8765432109876543210 #define MAX 8611686018427387000 #define zeros(x) __builtin_ctzll(x) #define in insert #define uniq(v) v.erase(unique(all(v)),v.en); #define er(i,n) erase(i,n); //#define co(x,a) count(all(x),a) #define lo(v,a) lower_bound(v.begin(),v.end(),a) #define up(v,a) upper_bound(v.begin(),v.end(),a) #define dou double #define ge(x,...) x __VA_ARGS__; ci(__VA_ARGS__); #define fix(n,ans) cout<<fixed<<std::setprecision(n)<<ans<<endl; void cc(){ cout<<endl; }; void ff(){ cout<<endl; }; void cl(){ cout<<endl; }; template<class T,class... A> void ff(T a,A... b){ cout<<a; (cout<<...<<(cout<<' ',b)); cout<<endl; }; template<class T,class... A> void cc(T a,A... b){ cout<<a; (cout<<...<<(cout<<' ',b)); cout<<' '; }; template<class T,class... A> void cl(T a,A... b){ cout<<a; (cout<<...<<(cout<<'\n',b)); cout<<endl; }; template<class T,class... A> void cn(T a,A... b){ cout<<a; (cout<<...<<(cout<<"",b)); }; template<class... A> void ci(A&... a){ (cin>>...>>a); }; template<class T>void ou(T v){fa(i,v)cout<<i<<" ";cout<<endl;} template<class T>void oun(T v){fa(i,v)cout<<i;cout<<endl;} template<class T>void ouu(T v){fa(i,v){fa(j,i)cout<<j<<" ";cout<<endl;}} template<class T> void oul(T v){fa(i,v)cout<<i<<endl;} template<class T>void in(T &v){fa(i,v)cin>>i;} template<class T>void inn(T &v){fa(i,v)fa(j,i)cin>>j;} template<class T>void oump(T &v){fa(i,v)ff(i.fi,i.se);} template<class T,class A>void pi(pair<T,A> &p){ci(p.fi,p.se);} template<class T,class A>void po(pair<T,A> &p){ff(p.fi,p.se);} template<class T,class... A> void fl(T a,A... b){ cout<<a; (cout<<...<<(cout<<' ',b)); cout<<endl<<flush; }; void init(){ ios::sync_with_stdio(false); cin.tie(0); } void solve(); /* void ori(); ll random_(){ std::random_device seed_gen; std::mt19937 engine(seed_gen()); // [-1.0, 1.0)の値の範囲で、等確率に実数を生成する std::uniform_real_distribution<> dist1(1.0, 100000); i(10000){ // 各分布法に基いて乱数を生成 ll n = dist1(engine); } return 0; } */ mll to_prime(ll x){ mll mp; for(ll i=2;i*i<=x;++i){ while(x%i==0){ ++mp[i]; x/=i; } } if(x!=1) ++mp[x]; re mp; } #define acc(v) accumulate(v.begin(),v.end(),0LL) #define acci(v,i) accumulate(v.begin(),v.begin()+i,0LL) #define dll deque<ll> int main(void){ init(); solve(); return 0; } template <typename T>class pnt{ public: T x,y; pnt(T x=0,T y=0):x(x),y(y){} pnt operator + (const pnt r)const { return pnt(x+r.x,y+r.y);} pnt operator - (const pnt r)const { return pnt(x-r.x,y-r.y);} pnt operator * (const pnt r)const { return pnt(x*r.x,y*r.y);} pnt operator / (const pnt r)const { return pnt(x/r.x,y/r.y);} pnt &operator += (const pnt r){ x+=r.x;y+=r.y;return *this;} pnt &operator -= (const pnt r){ x-=r.x;y-=r.y;return *this;} pnt &operator *= (const pnt r){ x*=r.x;y*=r.y;return *this;} pnt &operator /= (const pnt r){ x/=r.x;y/=r.y;return *this;} ll dist(const pnt r){ re (x-r.x)*(x-r.x)+(y-r.y)*(y-r.y); } ll man(const pnt r){ re abs(x-r.x)+abs(y-r.y); } pnt rot(const dou theta){ T xx,yy; xx=cos(theta)*x-sin(theta)*y; yy=sin(theta)*x+cos(theta)*y; return pnt(xx,yy); } }; istream &operator >> (istream &is,pnt<dou> &r){is>>r.x>>r.y;return is;} ostream &operator << (ostream &os,pnt<dou> &r){os<<r.x<<" "<<r.y;return os;} ll MOD= 1000000007; struct BIT{ ll n;vll v; BIT(ll n):n(n+n%2),v(2*(n+n%2)){}; ll op(ll x,ll y){ re gcd(x,y); } ll sum(ll i){ ll s=0; while(i){ s=gcd(s,v[i]); i-=i&-i; } re s; } void add(ll i,ll x){ while(i<=n){ v[i]=op(v[i],x); i+=i&-i; } } ll ran(ll l,ll r){ re op(sum(--l),sum(r)); } }; template<class T>bool chmaxeq(T& a, const T& b) { if (a <= b) { a = b; return 1; } return 0; } template<class T>bool chmineq(T& a, const T& b) { if (b <= a) { a = b; return 1; } return 0; } template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } struct Trie{ struct Node{ vll nxt; vec<st> done; ll dep,cnt=0; Node(ll c_):nxt(30),dep(c_){} }; ll root=0; vec<Node>tree={Node(root)}; void ins(st s){ ll c=0; for(ll i=0;i<s.sz;++i){ ll to=tree[c].nxt[s[i]-'a']; if(to==0){ to=tree.sz; tree[c].nxt[s[i]-'a']=to; tree.pub(Node(i+1)); } ++tree[to].cnt; c=to; } tree[c].done.pub(s); } ll cal(st s){ ll ans=0,c=0; for(ll i=0;i<s.sz;++i){ ll to=tree[c].nxt[s[i]-'a']; if(tree[to].cnt>1)++ans; else break; c=to; } re ans; } }; #define fo(i,x,y) for(ll i=x;i<=y;++i) #define rfo(_ii,_xx,_yy) for(ll _ii=_xx;_ii>=_yy;--_ii) #define qll queue<ll> template<typename T> using pq= priority_queue<T>; template<typename T> using pqg= priority_queue<T,vec<T>,greater<T>>; vec<pair<ch,ll>>rle(st s){//run_length_encoding ll n=s.sz; vec<pair<ch,ll>>ans; for(ll i=0;i<n;++i){ ll cnt=1; wh(i+1<n&&s[i+1]==s[i]){ ++cnt;++i; } ans.pub(mkp(s[i],cnt)); } re ans; } vector<vector<ll>> mat_mul(vector<vector<ll>> a, vector<vector<ll>> b, ll mod) { // 行列乗算 int n = a.size(); vector<vector<ll>> res(n, vector<ll>(n)); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { res[i][j] += a[i][k] * b[k][j]; res[i][j] %= mod; } } } return res; } vector<vector<ll>> mat_pow(vector<vector<ll>> a, ll b, ll mod) { // 行列累乗 int n = a.size(); vector<vector<ll>> res(n, vector<ll>(n)); for (int i = 0; i < n; i++) res[i][i] = 1; while (b) { if (b & 1) res = mat_mul(res, a, mod); a = mat_mul(a, a, mod); b >>= 1; } return res; } void Yes(bool f){ ff(f?"Yes":"No");re; } void yes(bool f){ ff(f?"yes":"no");re; } void YES(bool f){ ff(f?"YES":"NO");re; } void sub(); void solve(){ //ge(ll,t); ll t=1; xx(t){ sub(); } } template <class T> struct Edge { int rv, from, to; // rev:逆向きの辺の番号 T cap, original_cap; Edge(int f, int t, T c,int r ) : rv(r), from(f), to(t), cap(c), original_cap(c) {} }; template <class T> struct Graph { vector<vector<Edge<T>>> G; Graph(int n = 0) : G(n) {} vector<Edge<T>>& operator[](int i) { return G[i]; }//G[i]でi番目の辺を返す const size_t size() const { return G.size(); }// Edge<T>& redge(Edge<T> e) { // 逆向きの辺を返す return G[e.to][e.rv]; // 自己ループはないと仮定(あれば G[e.to][e.rev + 1] とする必要がある) } void add_edg(int from, int to, T cap) { // 有向辺を加える G[from].push_back( Edge<T>( from, to, cap,(int)G[to].size() )); G[to].push_back(Edge<T>( to, from, 0 ,(int)G[from].size() - 1)); } }; /* FordFulkerson: Ford-Fulkersonのアルゴリズムで最大流を求める構造体 max_flow(G,s,t):sからtへのグラフGの最大流を求める 副作用:G は最大流の残余ネットワークになる 計算量: O(|f*||E|) (f*:最大流) (この最悪ケースになることはほぼ無い) */ template <class T> struct Ford { const T INF = 1e9; vector<int> used; Ford(){}; T dfs(Graph<T>& G, int v, int t, T f) { // 増加可能経路を見つけて増加分のフローを返す if (v == t) return f; used[v] = true; for (auto& e : G[v]) { if (!used[e.to] && e.cap > 0) { T d = dfs(G, e.to, t, min(f, e.cap)); if (d > 0) { e.cap -= d; G.redge(e).cap += d; return d; } } } return 0; } T max_flow(Graph<T>& G, int s, int t) { T flow = 0; while (true) { used.assign(G.size(), 0); T f = dfs(G, s, t, INF); // f が増加分のフロー if (f == 0) { return flow; } else { flow += f; } } return 0; } /* Ford<ll>f; ff(f.max_flow(g,s,sink)); */ }; struct UF{ vll par,rk,siz; UF(ll n):par(n+5,-1),rk(n+5,0){ } ll root(ll x){ if(par[x]<0)return x; else return par[x]=root(par[x]); } bool same(ll x,ll y){ return root(x)==root(y); } bool unite(ll x,ll y){ ll rx=root(x),ry=root(y); if(rx==ry) return 0; if(rk[rx]<rk[ry]) swap(rx,ry); par[rx]+=par[ry]; par[ry]=rx; if(rk[rx]==rk[ry]) rk[rx]++; return 1; } ll size(ll x){ return -par[root(x)]; } }; ll dijkstra(ll start,ll n){//O((n+m)log(n)) vec<vec<pll>>e(n); vll dis(n+50,MAX); pqg<pll>q;q.push({0ll,start}); dis[start]=0; while(q.em^1){ auto [d,now]=q.top();q.pop(); if(dis[now]<d)continue; if(now==n)re dis[now]; for(auto[to,cst]:e[now])if(chmin(dis[to],cst+d)){ q.push({dis[to],to}); } } re -1; } struct UF_norank{ vll par,siz; UF_norank(ll n):par(n+5,-1){ } ll root(ll x){ if(par[x]<0)return x; else return par[x]=root(par[x]); } bool same(ll x,ll y){ return root(x)==root(y); } bool unite(ll from,ll to){ ll r_fr=root(from),r_to=root(to); if(r_fr==r_to) return 0; par[r_to]+=par[r_fr]; par[r_fr]=r_to; return 1; } ll size(ll x){ return -par[root(x)]; } }; struct SegTree{ ll n=1;vll v; SegTree(ll _n){ while(n<_n) n*=2; v.resize(n*2); } ll op(ll a,ll b){ re a+b; } void update(ll pos,ll val){ pos+=n-1; v[pos]=op(v[pos],val); //v[pos]=val; while(pos){ pos=(pos-1)/2; v[pos]=op(v[pos],val); } } ll ran(ll l,ll r){ re sub(l,r,0ll,0ll ,n-1); } ll sub(ll l,ll r,ll nowl,ll now,ll nowr){ if(nowr<l||r<nowl) re 0ll; if(l<=nowl&&nowr<=r)re v[now]; ll vall=sub(l,r,nowl,(now*2)+1,(nowl+nowr)/2); ll valr=sub(l,r,(nowl+nowr)/2+1,(now*2)+2,nowr); re op(vall,valr); } }; vll di(ll start,ll n,vec<vec<pll>>cost){//O((n+m)log(n)) vll dis(n+5,MAX); pqg<pll>q;q.push({0ll,start}); dis[start]=0; while(q.em^1){ auto [d,now]=q.top();q.pop(); if(dis[now]<d)continue; //if(now==goal)break; for(auto [to,cst]:cost[now]){ if(chmin(dis[to],cst+d)){ q.push({dis[to],to}); } } } re dis; } struct HLDecomposition {//Heavy light decomposition vector<set<int>> g; vector<int> vid, head, heavy, parent, depth, inv, in, out; HLDecomposition() {} HLDecomposition(int n) { init(n); } void init(int n) { g.resize(n); vid.resize(n, -1); head.resize(n); heavy.resize(n, -1); parent.resize(n); depth.resize(n); inv.resize(n); in.resize(n); out.resize(n); } void add(int u, int v) { g[u].insert(v); g[v].insert(u); } void build(int root) { dfs(root, -1); t = 0; dfs_hld(root); } int dfs(int curr, int prev) { parent[curr] = prev; int sub = 1, max_sub = 0; heavy[curr] = -1; for (int next : g[curr]) if (next != prev) { depth[next] = depth[curr] + 1; int sub_next = dfs(next, curr); sub += sub_next; if (max_sub < sub_next) max_sub = sub_next, heavy[curr] = next; }return sub; } int t = 0; void dfs_hld(int v = 0) { vid[v] = in[v] = t; t++; inv[in[v]] = v; if (0 <= heavy[v]) { head[heavy[v]] = head[v]; dfs_hld(heavy[v]); } for (auto u : g[v]) if (depth[v] < depth[u]) if (u != heavy[v]) { head[u] = u; dfs_hld(u); } out[v] = t; } void foreach(int u, int v, function<void(int, int)> f) { // [x,y] if (vid[u] > vid[v]) swap(u, v); f(max(vid[head[v]], vid[u]), vid[v]); if (head[u] != head[v]) foreach(u, parent[head[v]], f); } int ancestor(int from, int times) { while (true) { if (depth[head[from]] > depth[from] - times) { times -= depth[from] - depth[head[from]] + 1; if (head[from] == 0)return -1; from = parent[head[from]]; } else return inv[vid[from] - times]; } } int lca(int u, int v) {//lowest common ancestor 最近共通祖先 if (vid[u] > vid[v]) swap(u, v); if (head[u] == head[v]) return u; return lca(u, parent[head[v]]); } int distance(int u, int v) { return depth[u] + depth[v] - 2 * depth[lca(u, v)]; } int child(int parent, int child, int times) { assert(depth[parent] < depth[child]); int d = distance(parent, child); assert(times - 1 <= d); return ancestor(child, d - times); } int go(int from, int to, int times) { int d = distance(from, to); assert(0 <= times and times <= d); int lc = lca(from, to); if (lc == to)return ancestor(from, times); if (lc == from)return child(from, to, times); int dd = distance(from, lc); if (dd <= times)return go(lc, to, times - dd); return ancestor(from, times); } }; vll z_algo(string pattern, string text) {//z algorithm 最長共通接頭辞 string str = pattern + "$" + text; ll n = str.length(),np=pattern.sz; vll Z(n+5),ret(n+5); for (ll i = 1,L=0,R=0,j; i < n; ++i) { if (R<i) { L = R = i; while (R<n && str[R-L] == str[R]) R++; Z[i] = R-L; if(i>np) ret[i-np-1]=Z[i]; R--; }else{ j= i-L; if (Z[j]<R-i+1){ Z[i]=Z[j]; }else{ L = i; while (R<n && str[R-L] == str[R]) R++; Z[i] = R-L; R--; } if(i>np) ret[i-np-1]=Z[i]; } } //ff("z"); ou(Z); re ret; } // 2^10 = 1024 //vll dy={-1,-1,-1,0,0,1,1,1},dx={-1,0,1,-1,1,-1,0,1}; /* O(2*10^8) 9*10^18 1LL<<62 4*10^18 ~~(v.be,v.be+n,x); not include v.be+n set.lower_bound(x); ->. *++~ ! /%* +- << < == & && +=?: */ // 12345678901234567890 //vll dy={-1,0,0,1},dx={0,-1,1,0}; ll mod = 1000000007; const ll INF = mod * mod; typedef pair<int, int>P; #define per(i,n) for(int i=n-1;i>=0;i--) #define Rep(i,sta,n) for(int i=sta;i<n;i++) #define rp(i,n) for(int i=0;i<n;i++) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) ll mod_pow(ll x, ll n, ll m = mod) { if (n < 0) { ll res = mod_pow(x, -n, m); return mod_pow(res, m - 2, m); } if (abs(x) >= m)x %= m; if (x < 0)x += m; //if (x == 0)return 0; ll res = 1; while (n) { if (n & 1)res = res * x % m; x = x * x % m; n >>= 1; } return res; } //mod should be <2^31 struct modint { int n; modint() :n(0) { ; } modint(ll m) { if (m < 0 || mod <= m) { m %= mod; if (m < 0)m += mod; } n = m; } operator int() { return n; } }; bool operator==(modint a, modint b) { return a.n == b.n; } bool operator<(modint a, modint b) { return a.n < b.n; } modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; } modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; } modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; } modint operator+(modint a, modint b) { return a += b; } modint operator-(modint a, modint b) { return a -= b; } modint operator*(modint a, modint b) { return a *= b; } modint operator^(modint a, ll n) { if (n == 0)return modint(1); modint res = (a * a) ^ (n / 2); if (n % 2)res = res * a; return res; } ll inv(ll a, ll p) { return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p); } modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); } modint operator/=(modint& a, modint b) { a = a / b; return a; } const int max_n = 1 << 20; modint fact[max_n], factinv[max_n]; void init_f() { fact[0] = modint(1); for (int i = 0; i < max_n - 1; i++) { fact[i + 1] = fact[i] * modint(i + 1); } factinv[max_n - 1] = modint(1) / fact[max_n - 1]; for (int i = max_n - 2; i >= 0; i--) { factinv[i] = factinv[i + 1] * modint(i + 1); } } modint comb(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[b] * factinv[a - b]; } modint combP(int a, int b) { if (a < 0 || b < 0 || a < b)return 0; return fact[a] * factinv[a - b]; } ll gcd(ll a, ll b) { a = abs(a); b = abs(b); if (a < b)swap(a, b); while (b) { ll r = a % b; a = b; b = r; } return a; } //(1)区間に一様加算 (2)区間の合計値 struct segtree{ public: const int SIZE = 1ll << 20; //seg:区間の合計値 lazy:区間に対して、加える値でまだ遅延しているもの vector<ll> seg, lazy;//segは欲しい情報 lazyは区間に対する一様な処理を示すもの segtree():seg(SIZE * 2), lazy(SIZE * 2){} void lazy_evaluate(int k, int l, int r){//遅延情報の適用方法 if(lazy[k] != 0){ chmax(seg[k] , lazy[k]);//区間[l,r)にすべて同じ値を追加することになっていて、segには合計値が入っているので、加える値を足す if(r - l > 1){ chmax(lazy[k * 2 + 1] , lazy[k]);//遅延を左の子に伝搬 chmax(lazy[k * 2 + 2] , lazy[k]);//遅延を右の子に伝搬 } lazy[k] = 0;//ノードkは伝搬完了 } } // 更新領域, 現在地, 対象領域 ,値 void update(int a, int b, int k, int l, int r, ll x){ lazy_evaluate(k, l, r); if(r <= a || b <= l) return; if(a <= l && r <= b){ chmax(lazy[k] , x); //加える lazy_evaluate(k, l, r); }else{ update(a, b, k * 2 + 1, l, (l + r) / 2, x); update(a, b, k * 2 + 2, (l + r) / 2, r, x); chmax(seg[k] ,max( seg[k * 2 + 1] , seg[k * 2 + 2])); //区間の合計 } } ll query(int a, int b, int k, int l, int r){ lazy_evaluate(k, l, r); if(r <= a || b <= l) return 0;//合計に影響のないもの if(a <= l && r <= b) return seg[k]; ll x = query(a, b, k * 2 + 1, l, (l + r) / 2); ll y = query(a, b, k * 2 + 2, (l + r) / 2, r); return max(x,y); //左右の合計を } //update(a,b,x) := [a,b)を全てxを加える void update(int a, int b, int x){update(a, b, 0, 0, SIZE, x);} //query(a,b) := [a,b)に対する合計値を求める ll query(int a, int b){return query(a, b, 0, 0, SIZE);} }; void sub() { ge(ll,n); map<ll,vll> mp; i(n) { ge(ll,x); mp[x].pub(i); } segtree st; for(auto [x,v]:mp){ st.update(v[0],v.ba+ 1, x); } vll ans; i(n) { ans.pub(st.query(i,i+1)); } ou(ans); }