結果
問題 | No.1796 木上のクーロン |
ユーザー | ebi_fly |
提出日時 | 2024-01-05 02:06:00 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2,300 ms / 10,000 ms |
コード長 | 27,529 bytes |
コンパイル時間 | 3,230 ms |
コンパイル使用メモリ | 210,396 KB |
実行使用メモリ | 38,512 KB |
最終ジャッジ日時 | 2024-09-27 18:57:37 |
合計ジャッジ時間 | 18,246 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 10 ms
7,296 KB |
testcase_01 | AC | 10 ms
7,296 KB |
testcase_02 | AC | 10 ms
7,168 KB |
testcase_03 | AC | 10 ms
7,296 KB |
testcase_04 | AC | 10 ms
7,296 KB |
testcase_05 | AC | 10 ms
7,168 KB |
testcase_06 | AC | 10 ms
7,296 KB |
testcase_07 | AC | 11 ms
7,296 KB |
testcase_08 | AC | 11 ms
7,424 KB |
testcase_09 | AC | 11 ms
7,296 KB |
testcase_10 | AC | 11 ms
7,424 KB |
testcase_11 | AC | 11 ms
7,424 KB |
testcase_12 | AC | 11 ms
7,424 KB |
testcase_13 | AC | 10 ms
7,424 KB |
testcase_14 | AC | 11 ms
7,296 KB |
testcase_15 | AC | 11 ms
7,424 KB |
testcase_16 | AC | 12 ms
7,296 KB |
testcase_17 | AC | 11 ms
7,424 KB |
testcase_18 | AC | 11 ms
7,424 KB |
testcase_19 | AC | 11 ms
7,552 KB |
testcase_20 | AC | 102 ms
14,304 KB |
testcase_21 | AC | 102 ms
14,048 KB |
testcase_22 | AC | 204 ms
21,416 KB |
testcase_23 | AC | 208 ms
21,328 KB |
testcase_24 | AC | 330 ms
28,488 KB |
testcase_25 | AC | 320 ms
27,852 KB |
testcase_26 | AC | 449 ms
35,136 KB |
testcase_27 | AC | 446 ms
35,264 KB |
testcase_28 | AC | 2,300 ms
33,416 KB |
testcase_29 | AC | 2,278 ms
33,392 KB |
testcase_30 | AC | 350 ms
38,512 KB |
testcase_31 | AC | 373 ms
38,440 KB |
testcase_32 | AC | 392 ms
34,020 KB |
testcase_33 | AC | 954 ms
36,000 KB |
testcase_34 | AC | 861 ms
36,288 KB |
testcase_35 | AC | 1,238 ms
32,260 KB |
testcase_36 | AC | 1,247 ms
32,448 KB |
ソースコード
#line 2 "convolution/ntt.hpp" #include <algorithm> #include <array> #include <bit> #include <cassert> #include <vector> #line 2 "math/internal_math.hpp" #line 4 "math/internal_math.hpp" namespace ebi { namespace internal { constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; if (m == 880803841) return 26; if (m == 924844033) return 5; return -1; } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace ebi #line 2 "modint/base.hpp" #include <concepts> #include <iostream> #include <utility> namespace ebi { template <class T> concept Modint = requires(T a, T b) { a + b; a - b; a * b; a / b; a.inv(); a.val(); a.pow(std::declval<long long>()); T::mod(); }; template <Modint mint> std::istream &operator>>(std::istream &os, mint &a) { long long x; os >> x; a = x; return os; } template <Modint mint> std::ostream &operator<<(std::ostream &os, const mint &a) { return os << a.val(); } } // namespace ebi #line 11 "convolution/ntt.hpp" namespace ebi { namespace internal { template <Modint mint, int g = internal::primitive_root<mint::mod()>> struct ntt_info { static constexpr int rank2 = std::countr_zero((unsigned int)(mint::mod() - 1)); std::array<mint, rank2 + 1> root, inv_root; ntt_info() { root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); inv_root[rank2] = root[rank2].inv(); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; inv_root[i] = inv_root[i + 1] * inv_root[i + 1]; } } }; template <Modint mint> void butterfly(std::vector<mint>& a) { static const ntt_info<mint> info; int n = int(a.size()); int bit_size = std::countr_zero(a.size()); assert(n == (int)std::bit_ceil(a.size())); // bit reverse for (int i = 0, j = 1; j < n - 1; j++) { for (int k = n >> 1; k > (i ^= k); k >>= 1) ; if (j < i) { std::swap(a[i], a[j]); } } for (int bit = 0; bit < bit_size; bit++) { for (int i = 0; i < n / (1 << (bit + 1)); i++) { mint zeta1 = 1; mint zeta2 = info.root[1]; for (int j = 0; j < (1 << bit); j++) { int idx = i * (1 << (bit + 1)) + j; int jdx = idx + (1 << bit); mint p1 = a[idx]; mint p2 = a[jdx]; a[idx] = p1 + zeta1 * p2; a[jdx] = p1 + zeta2 * p2; zeta1 *= info.root[bit + 1]; zeta2 *= info.root[bit + 1]; } } } } template <Modint mint> void butterfly_inv(std::vector<mint>& a) { static const ntt_info<mint> info; int n = int(a.size()); int bit_size = std::countr_zero(a.size()); assert(n == (int)std::bit_ceil(a.size())); // bit reverse for (int i = 0, j = 1; j < n - 1; j++) { for (int k = n >> 1; k > (i ^= k); k >>= 1) ; if (j < i) { std::swap(a[i], a[j]); } } for (int bit = 0; bit < bit_size; bit++) { for (int i = 0; i < n / (1 << (bit + 1)); i++) { mint zeta1 = 1; mint zeta2 = info.inv_root[1]; for (int j = 0; j < (1 << bit); j++) { int idx = i * (1 << (bit + 1)) + j; int jdx = idx + (1 << bit); mint p1 = a[idx]; mint p2 = a[jdx]; a[idx] = p1 + zeta1 * p2; a[jdx] = p1 + zeta2 * p2; zeta1 *= info.inv_root[bit + 1]; zeta2 *= info.inv_root[bit + 1]; } } } mint inv_n = mint(n).inv(); for (int i = 0; i < n; i++) { a[i] *= inv_n; } } } // namespace internal template <Modint mint> std::vector<mint> convolution_naive(const std::vector<mint>& f, const std::vector<mint>& g) { if (f.empty() || g.empty()) return {}; int n = int(f.size()), m = int(g.size()); std::vector<mint> c(n + m - 1); if (n < m) { for (int j = 0; j < m; j++) { for (int i = 0; i < n; i++) { c[i + j] += f[i] * g[j]; } } } else { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { c[i + j] += f[i] * g[j]; } } } return c; } template <Modint mint> std::vector<mint> convolution(const std::vector<mint>& f, const std::vector<mint>& g) { if (f.empty() || g.empty()) return {}; if (std::min(f.size(), g.size()) < 60) return convolution_naive(f, g); int n = std::bit_ceil(f.size() + g.size() - 1); std::vector<mint> a(n), b(n); std::copy(f.begin(), f.end(), a.begin()); std::copy(g.begin(), g.end(), b.begin()); internal::butterfly(a); internal::butterfly(b); for (int i = 0; i < n; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(f.size() + g.size() - 1); return a; } } // namespace ebi #line 2 "fps/middle_product.hpp" #line 7 "fps/middle_product.hpp" #include <ranges> #line 10 "fps/middle_product.hpp" namespace ebi { template <Modint mint, std::vector<mint> (*convolution)(const std::vector<mint> &, const std::vector<mint> &)> std::vector<mint> middle_product(const std::vector<mint> &a, const std::vector<mint> &b) { assert(a.size() >= b.size()); if(std::min(a.size() - b.size() + 1, b.size()) <= 60) { return middle_product_naive<mint>(a, b); } auto rb = b; std::reverse(rb.begin(), rb.end()); std::vector<mint> c = convolution(a, rb); c.resize(a.size()); c.erase(c.begin(), c.begin() + b.size() - 1); return c; } template<Modint mint> std::vector<mint> middle_product_naive(const std::vector<mint> &a, const std::vector<mint> &b) { int n = (int)a.size(); int m = (int)b.size(); assert(n >= m); std::vector<mint> c(n - m + 1, 0); for(int i : std::views::iota(0, n - m + 1)) { for(int j: std::views::iota(0, m)) { c[i] += b[j] * a[i + j]; } } return c; } } // namespace ebi #line 2 "graph/template.hpp" #line 4 "graph/template.hpp" namespace ebi { template <class T> struct Edge { int to; T cost; Edge(int _to, T _cost = 1) : to(_to), cost(_cost) {} }; template <class T> struct Graph : std::vector<std::vector<Edge<T>>> { using std::vector<std::vector<Edge<T>>>::vector; void add_edge(int u, int v, T w, bool directed = false) { (*this)[u].emplace_back(v, w); if (directed) return; (*this)[v].emplace_back(u, w); } }; struct graph : std::vector<std::vector<int>> { using std::vector<std::vector<int>>::vector; void add_edge(int u, int v, bool directed = false) { (*this)[u].emplace_back(v); if (directed) return; (*this)[v].emplace_back(u); } }; } // namespace ebi #line 2 "modint/modint.hpp" #line 5 "modint/modint.hpp" #line 7 "modint/modint.hpp" namespace ebi { template <int m> struct static_modint { private: using modint = static_modint; public: static constexpr int mod() { return m; } static constexpr modint raw(int v) { modint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} constexpr static_modint(long long v) { v %= (long long)umod(); if (v < 0) v += (long long)umod(); _v = (unsigned int)v; } constexpr unsigned int val() const { return _v; } constexpr unsigned int value() const { return val(); } constexpr modint &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } constexpr modint &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } constexpr modint operator++(int) { modint res = *this; ++*this; return res; } constexpr modint operator--(int) { modint res = *this; --*this; return res; } constexpr modint &operator+=(const modint &rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr modint &operator-=(const modint &rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr modint &operator*=(const modint &rhs) { unsigned long long x = _v; x *= rhs._v; _v = (unsigned int)(x % (unsigned long long)umod()); return *this; } constexpr modint &operator/=(const modint &rhs) { return *this = *this * rhs.inv(); } constexpr modint operator+() const { return *this; } constexpr modint operator-() const { return modint() - *this; } constexpr modint pow(long long n) const { assert(0 <= n); modint x = *this, res = 1; while (n) { if (n & 1) res *= x; x *= x; n >>= 1; } return res; } constexpr modint inv() const { assert(_v); return pow(umod() - 2); } friend modint operator+(const modint &lhs, const modint &rhs) { return modint(lhs) += rhs; } friend modint operator-(const modint &lhs, const modint &rhs) { return modint(lhs) -= rhs; } friend modint operator*(const modint &lhs, const modint &rhs) { return modint(lhs) *= rhs; } friend modint operator/(const modint &lhs, const modint &rhs) { return modint(lhs) /= rhs; } friend bool operator==(const modint &lhs, const modint &rhs) { return lhs.val() == rhs.val(); } friend bool operator!=(const modint &lhs, const modint &rhs) { return !(lhs == rhs); } private: unsigned int _v = 0; static constexpr unsigned int umod() { return m; } }; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; } // namespace ebi #line 3 "template/template.hpp" #include <bitset> #line 5 "template/template.hpp" #include <chrono> #include <climits> #include <cmath> #include <complex> #include <cstddef> #include <cstdint> #include <cstdlib> #include <cstring> #include <functional> #include <iomanip> #line 16 "template/template.hpp" #include <limits> #include <map> #include <memory> #include <numbers> #include <numeric> #include <optional> #include <queue> #include <random> #line 25 "template/template.hpp" #include <set> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #line 34 "template/template.hpp" #define rep(i, a, n) for (int i = (int)(a); i < (int)(n); i++) #define rrep(i, a, n) for (int i = ((int)(n)-1); i >= (int)(a); i--) #define Rep(i, a, n) for (i64 i = (i64)(a); i < (i64)(n); i++) #define RRep(i, a, n) for (i64 i = ((i64)(n)-i64(1)); i >= (i64)(a); i--) #define all(v) (v).begin(), (v).end() #define rall(v) (v).rbegin(), (v).rend() #line 2 "template/debug_template.hpp" #line 4 "template/debug_template.hpp" namespace ebi { #ifdef LOCAL #define debug(...) \ std::cerr << "LINE: " << __LINE__ << " [" << #__VA_ARGS__ << "]:", \ debug_out(__VA_ARGS__) #else #define debug(...) #endif void debug_out() { std::cerr << std::endl; } template <typename Head, typename... Tail> void debug_out(Head h, Tail... t) { std::cerr << " " << h; if (sizeof...(t) > 0) std::cerr << " :"; debug_out(t...); } } // namespace ebi #line 2 "template/int_alias.hpp" #line 4 "template/int_alias.hpp" namespace ebi { using ld = long double; using std::size_t; using i8 = std::int8_t; using u8 = std::uint8_t; using i16 = std::int16_t; using u16 = std::uint16_t; using i32 = std::int32_t; using u32 = std::uint32_t; using i64 = std::int64_t; using u64 = std::uint64_t; using i128 = __int128_t; using u128 = __uint128_t; } // namespace ebi #line 2 "template/io.hpp" #line 7 "template/io.hpp" namespace ebi { template <typename T1, typename T2> std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &pa) { return os << pa.first << " " << pa.second; } template <typename T1, typename T2> std::istream &operator>>(std::istream &os, std::pair<T1, T2> &pa) { return os >> pa.first >> pa.second; } template <typename T> std::ostream &operator<<(std::ostream &os, const std::vector<T> &vec) { for (std::size_t i = 0; i < vec.size(); i++) os << vec[i] << (i + 1 == vec.size() ? "" : " "); return os; } template <typename T> std::istream &operator>>(std::istream &os, std::vector<T> &vec) { for (T &e : vec) std::cin >> e; return os; } template <typename T> std::ostream &operator<<(std::ostream &os, const std::optional<T> &opt) { if (opt) { os << opt.value(); } else { os << "invalid value"; } return os; } void fast_io() { std::cout << std::fixed << std::setprecision(15); std::cin.tie(nullptr); std::ios::sync_with_stdio(false); } } // namespace ebi #line 2 "template/utility.hpp" #line 5 "template/utility.hpp" #line 7 "template/utility.hpp" namespace ebi { template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } template <class T> T safe_ceil(T a, T b) { if (a % b == 0) return a / b; else if (a >= 0) return (a / b) + 1; else return -((-a) / b); } template <class T> T safe_floor(T a, T b) { if (a % b == 0) return a / b; else if (a >= 0) return a / b; else return -((-a) / b) - 1; } constexpr i64 LNF = std::numeric_limits<i64>::max() / 4; constexpr int INF = std::numeric_limits<int>::max() / 2; const std::vector<int> dy = {1, 0, -1, 0, 1, 1, -1, -1}; const std::vector<int> dx = {0, 1, 0, -1, 1, -1, 1, -1}; } // namespace ebi #line 2 "tree/centroid_decomposition.hpp" #line 7 "tree/centroid_decomposition.hpp" namespace ebi { namespace internal { template <class F> void centroid_decomposition_dfs_naive(const std::vector<int> &par, const std::vector<int> &original_vs, F f) { const int n = (int)par.size(); assert(par.size() == original_vs.size()); int center = -1; std::vector<int> sz(n, 1); for (const int v : std::views::iota(0, n) | std::views::reverse) { if (sz[v] >= (n + 1) / 2) { center = v; break; } sz[par[v]] += sz[v]; } std::vector<int> color(n, -1); std::vector<int> vs = {center}; color[center] = 0; int c = 1; for (const int v : std::views::iota(1, n)) { if (par[v] == center) { vs.emplace_back(v); color[v] = c++; } } if (center > 0) { for (int v = par[center]; v != -1; v = par[v]) { vs.emplace_back(v); color[v] = c; } c++; } for (const int v : std::views::iota(0, n)) { if (color[v] == -1) { vs.emplace_back(v); color[v] = color[par[v]]; } } std::vector<int> index_ptr(c + 1, 0); for (const int v : std::views::iota(0, n)) { index_ptr[color[v] + 1]++; } for (const int i : std::views::iota(0, c)) { index_ptr[i + 1] += index_ptr[i]; } auto counter = index_ptr; std::vector<int> ord(n); for (auto v : vs) { ord[counter[color[v]]++] = v; } std::vector<int> relabel(n); for (const int v : std::views::iota(0, n)) { relabel[ord[v]] = v; } std::vector<int> original_vs2(n); for (const int v : std::views::iota(0, n)) { original_vs2[relabel[v]] = original_vs[v]; } std::vector<int> relabel_par(n, -1); for (int v : std::views::iota(1, n)) { int a = relabel[v]; int b = relabel[par[v]]; if (a > b) std::swap(a, b); relabel_par[b] = a; } f(relabel_par, original_vs2, index_ptr); for (const int i : std::views::iota(1, c)) { int l = index_ptr[i], r = index_ptr[i + 1]; std::vector<int> par1(r - l, -1); std::vector<int> original_vs1(r - l, -1); for (int v : std::views::iota(l, r)) { par1[v - l] = (relabel_par[v] == 0 ? -1 : relabel_par[v] - l); original_vs1[v - l] = original_vs2[v]; } centroid_decomposition_dfs_naive(par1, original_vs1, f); } return; } template <class F> void one_third_centroid_decomposition(const std::vector<int> &par, const std::vector<int> &original_vs, F f) { const int n = (int)par.size(); assert(n > 1); if (n == 2) return; int center = -1; std::vector<int> sz(n, 1); for (const int v : std::views::iota(0, n) | std::views::reverse) { if (sz[v] >= (n + 1) / 2) { center = v; break; } sz[par[v]] += sz[v]; } std::vector<int> color(n, -1); std::vector<int> ord(n, -1); ord[center] = 0; int t = 1; int red = n - sz[center]; for (int v = par[center]; v != -1; v = par[v]) { ord[v] = t++; color[v] = 0; } for (const int v : std::views::iota(1, n)) { if (par[v] == center && 3 * (red + sz[v]) <= 2 * (n - 1)) { red += sz[v]; ord[v] = t++; color[v] = 0; } } for (const int v : std::views::iota(1, n)) { if (v != center && color[v] == -1 && color[par[v]] == 0) { ord[v] = t++; color[v] = 0; } } const int n0 = t - 1; for (const int v : std::views::iota(1, n)) { if (v != center && color[v] == -1) { ord[v] = t++; color[v] = 1; } } assert(t == n); const int n1 = n - 1 - n0; std::vector<int> par0(n0 + 1, -1), par1(n1 + 1, -1), par2(n, -1); std::vector<int> original_vs0(n0 + 1), original_vs1(n1 + 1), original_vs2(n); for (const int i : std::views::iota(0, n)) { int v = ord[i]; original_vs2[v] = original_vs[i]; if (color[i] != 1) { original_vs0[v] = original_vs[i]; } if (color[i] != 0) { int idx = std::max(v - n0, 0); original_vs1[idx] = original_vs[i]; } } for (const int v : std::views::iota(1, n)) { int a = ord[v], b = ord[par[v]]; if (a > b) std::swap(a, b); par2[b] = a; if (color[v] != 1 && color[par[v]] != 1) { par0[b] = a; } if (color[v] != 0 && color[par[v]] != 0) { par1[b - n0] = std::max(a - n0, 0); } } f(par2, original_vs2, n0, n1); one_third_centroid_decomposition(par0, original_vs0, f); one_third_centroid_decomposition(par1, original_vs1, f); return; } template <class F> void one_third_centroid_decomposition_virtual_real( const std::vector<int> &par, const std::vector<int> &original_vs, const std::vector<int> &is_real, F f) { const int n = (int)par.size(); assert(n > 1); if (n == 2) { if (is_real[0] && is_real[1]) { f(par, original_vs, {0, 1}); } return; } int center = -1; std::vector<int> sz(n, 1); for (const int v : std::views::iota(0, n) | std::views::reverse) { if (sz[v] >= (n + 1) / 2) { center = v; break; } sz[par[v]] += sz[v]; } std::vector<int> color(n, -1); std::vector<int> ord(n, -1); ord[center] = 0; int t = 1; int red = n - sz[center]; for (int v = par[center]; v != -1; v = par[v]) { ord[v] = t++; color[v] = 0; } for (const int v : std::views::iota(1, n)) { if (par[v] == center && 3 * (red + sz[v]) <= 2 * (n - 1)) { red += sz[v]; ord[v] = t++; color[v] = 0; } } for (const int v : std::views::iota(1, n)) { if (v != center && color[v] == -1 && color[par[v]] == 0) { ord[v] = t++; color[v] = 0; } } const int n0 = t - 1; for (const int v : std::views::iota(1, n)) { if (v != center && color[v] == -1) { ord[v] = t++; color[v] = 1; } } assert(t == n); const int n1 = n - 1 - n0; std::vector<int> par0(n0 + 1, -1), par1(n1 + 1, -1), par2(n, -1); std::vector<int> original_vs0(n0 + 1), original_vs1(n1 + 1), original_vs2(n); std::vector<int> is_real0(n0 + 1), is_real1(n1 + 1), is_real2(n); for (const int i : std::views::iota(0, n)) { int v = ord[i]; original_vs2[v] = original_vs[i]; is_real2[v] = is_real[i]; if (color[i] != 1) { original_vs0[v] = original_vs[i]; is_real0[v] = is_real[i]; } if (color[i] != 0) { int idx = std::max(v - n0, 0); original_vs1[idx] = original_vs[i]; is_real1[idx] = is_real[i]; } } for (const int v : std::views::iota(1, n)) { int a = ord[v], b = ord[par[v]]; if (a > b) std::swap(a, b); par2[b] = a; if (color[v] != 1 && color[par[v]] != 1) { par0[b] = a; } if (color[v] != 0 && color[par[v]] != 0) { par1[b - n0] = std::max(a - n0, 0); } } if (is_real[center]) { color.assign(n, -1); color[0] = 0; for (const int v : std::views::iota(1, n)) { if (is_real2[v]) color[v] = 1; } f(par2, original_vs2, color); is_real0[0] = is_real1[0] = is_real2[0] = 0; } color.assign(n, -1); for (const int v : std::views::iota(1, n)) { if (is_real2[v]) { color[v] = int(v > n0); } } f(par2, original_vs2, color); one_third_centroid_decomposition_virtual_real(par0, original_vs0, is_real0, f); one_third_centroid_decomposition_virtual_real(par1, original_vs1, is_real1, f); return; } } // namespace internal template <int MODE, class F> void centroid_decomposition(const std::vector<std::vector<int>> &tree, F f) { int n = (int)tree.size(); if (n == 1) return; std::vector<int> bfs_order(n), par(n, -1); bfs_order[0] = 0; int l = 0, r = 1; while (l < r) { int v = bfs_order[l++]; for (auto nv : tree[v]) { if (nv == par[v]) continue; bfs_order[r++] = nv; par[nv] = v; } } assert(l == n && r == n); { std::vector<int> relabel(n); for (int i : std::views::iota(0, n)) { relabel[bfs_order[i]] = i; } std::vector<int> relabel_par(n, -1); for (int i : std::views::iota(1, n)) { relabel_par[relabel[i]] = relabel[par[i]]; } std::swap(par, relabel_par); } static_assert(MODE == 0 || MODE == 1 || MODE == 2); if constexpr (MODE == 0) { internal::centroid_decomposition_dfs_naive(par, bfs_order, f); } else if constexpr (MODE == 1) { internal::one_third_centroid_decomposition(par, bfs_order, f); } else { internal::one_third_centroid_decomposition_virtual_real( par, bfs_order, std::vector<int>(n, 1), f); } } } // namespace ebi #line 2 "math/binomial.hpp" #line 8 "math/binomial.hpp" #line 10 "math/binomial.hpp" namespace ebi { template <Modint mint> struct Binomial { private: static void extend(int len = -1) { int sz = (int)fact.size(); if (len < 0) len = 2 * sz; else len = std::max(2 * sz, (int)std::bit_ceil(std::uint32_t(len))); len = std::min(len, mint::mod()); assert(sz <= len); fact.resize(len); inv_fact.resize(len); for (int i : std::views::iota(sz, len)) { fact[i] = fact[i - 1] * i; } inv_fact[len - 1] = fact[len - 1].inv(); for (int i : std::views::iota(sz, len) | std::views::reverse) { inv_fact[i - 1] = inv_fact[i] * i; } } public: Binomial() = default; Binomial(int n) { extend(n + 1); } static mint f(int n) { if (n >= (int)fact.size()) [[unlikely]] { extend(n + 1); } return fact[n]; } static mint inv_f(int n) { if (n >= (int)fact.size()) [[unlikely]] { extend(n + 1); } return inv_fact[n]; } static mint c(int n, int r) { if (r < 0 || n < r) return 0; return f(n) * inv_f(r) * inv_f(n - r); } static mint p(int n, int r) { if (r < 0 || n < r) return 0; return f(n) * inv_f(n - r); } static mint inv(int n) { return inv_f(n) * f(n - 1); } static void reserve(int n) { extend(n + 1); } private: static std::vector<mint> fact, inv_fact; }; template <Modint mint> std::vector<mint> Binomial<mint>::fact = std::vector<mint>(2, 1); template <Modint mint> std::vector<mint> Binomial<mint>::inv_fact = std::vector<mint>(2, 1); } // namespace ebi #line 8 "a.cpp" namespace ebi { using mint = modint998244353; void main_() { Binomial<mint> binom(300000); int n; std::cin >> n; std::vector<mint> q(n); std::cin >> q; graph tree(n); auto ans = q; rep(i, 0, n - 1) { int u, v; std::cin >> u >> v; u--; v--; tree.add_edge(u, v); ans[u] += q[v] * binom.inv(4); ans[v] += q[u] * binom.inv(4); } auto calc = [&](const std::vector<int> &par, const std::vector<int> &vs, int n0, int n1) { int sz = (int)par.size(); std::vector<int> depth(sz, 0); rep(i, 1, sz) { depth[i] = depth[par[i]] + 1; } auto calc2 = [&](int l0, int r0, int l1, int r1) -> void { int sz0 = *std::max_element(depth.begin() + l0, depth.begin() + r0); int sz1 = *std::max_element(depth.begin() + l1, depth.begin() + r1); std::vector<mint> f(sz0 + sz1 + 1), g(sz1 + 1); rep(i,0,f.size()) { f[i] = binom.inv(i + 1) * binom.inv(i + 1); } rep(i,l1,r1) { g[depth[i]] += q[vs[i]]; } auto h = middle_product<mint, convolution>(f, g); assert((int)h.size() == sz0 + 1); rep(i,l0,r0) { ans[vs[i]] += h[depth[i]]; } }; calc2(1, 1 + n0, 1 + n0, 1 + n0 + n1); calc2(1 + n0, 1 + n0 + n1, 1, 1 + n0); }; centroid_decomposition<1>(tree, calc); rep(i,0,n) { ans[i] *= binom.f(n) * binom.f(n); std::cout << ans[i] << '\n'; } } } // namespace ebi int main() { ebi::fast_io(); int t = 1; // std::cin >> t; while (t--) { ebi::main_(); } return 0; }