結果

問題 No.2600 Avator Height
ユーザー SlephySlephy
提出日時 2024-01-12 21:23:50
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 40 ms / 2,000 ms
コード長 9,338 bytes
コンパイル時間 1,865 ms
コンパイル使用メモリ 205,796 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-27 21:03:19
合計ジャッジ時間 5,232 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 4 ms
5,248 KB
testcase_01 AC 36 ms
5,376 KB
testcase_02 AC 37 ms
5,376 KB
testcase_03 AC 37 ms
5,376 KB
testcase_04 AC 40 ms
5,376 KB
testcase_05 AC 38 ms
5,376 KB
testcase_06 AC 37 ms
5,376 KB
testcase_07 AC 38 ms
5,376 KB
testcase_08 AC 37 ms
5,376 KB
testcase_09 AC 36 ms
5,376 KB
testcase_10 AC 37 ms
5,376 KB
testcase_11 AC 38 ms
5,376 KB
testcase_12 AC 36 ms
5,376 KB
testcase_13 AC 36 ms
5,376 KB
testcase_14 AC 38 ms
5,376 KB
testcase_15 AC 38 ms
5,376 KB
testcase_16 AC 38 ms
5,376 KB
testcase_17 AC 36 ms
5,376 KB
testcase_18 AC 37 ms
5,376 KB
testcase_19 AC 36 ms
5,376 KB
testcase_20 AC 36 ms
5,376 KB
testcase_21 AC 38 ms
5,376 KB
testcase_22 AC 37 ms
5,376 KB
testcase_23 AC 38 ms
5,376 KB
testcase_24 AC 25 ms
5,376 KB
testcase_25 AC 35 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
constexpr int INF = (int)1e9 + 1001010;
constexpr ll llINF = (ll)4e18 + 22000020;
const string endn = "\n";
template <class T> inline auto vector2(size_t i, size_t j, const T &init = T()) {return vector(i, vector<T>(j, init));}
const string ELEM_SEPARATION = " ", VEC_SEPARATION = endn;
template<class T> istream& operator >>(istream &i, vector<T> &A) {for(auto &I : A) {i >> I;} return i;}
template<class T> ostream& operator <<(ostream &o, const vector<T> &A) {int i=A.size(); for(auto &I : A){o << I << (--i ? ELEM_SEPARATION : "");} return o;}
template<class T> ostream& operator <<(ostream &o, const vector<vector<T>> &A) {int i=A.size(); for(auto &I : A){o << I << (--i ? VEC_SEPARATION : "");} return o;}
template<class T> vector<T>& operator ++(vector<T> &A, int n) {for(auto &I : A) {I++;} return A;}
template<class T> vector<T>& operator --(vector<T> &A, int n) {for(auto &I : A) {I--;} return A;}
template<class T, class U> bool chmax(T &a, const U &b) {return ((a < b) ? (a = b, true) : false);}
template<class T, class U> bool chmin(T &a, const U &b) {return ((a > b) ? (a = b, true) : false);}
ll floor(ll a, ll b){if(b < 0) a = -a, b = -b; return a >= 0 ? a/b : (a+1)/b - 1;}
ll ceil (ll a, ll b){if(b < 0) a = -a, b = -b; return a > 0 ? (a-1)/b + 1 : a/b;}
ll bit(unsigned long long val, unsigned long long digit){return (val >> digit) & 1;}
// ================================== ここまでテンプレ ==================================

// modint
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}
struct barrett {
    unsigned int _m;
    unsigned long long im;
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
    unsigned int umod() const { return _m; }
    unsigned int mul(unsigned int a, unsigned int b) const {
        unsigned long long z = a;
        z *= b;
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    for (long long a : {2, 7, 61}) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;
    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b
        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}


template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;
template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;
template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;
template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;
template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
}  // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint {
    using mint = static_modint;
  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }
    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
    unsigned int val() const { return _v; }
    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }
    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }
    friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
    friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
    friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
    friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
    friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; }
    friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; }

    friend istream &operator >> (istream &i, mint &a) {long long v; i >> v; a = v; return i;}
    friend ostream &operator << (ostream &os, const mint &a) { return os << a.val(); }
  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
}  // namespace atcoder
using namespace atcoder;
using mint = modint998244353;

int main(int argc, char *argv[]){
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    const int MAX = 2e5 + 10;
    vector<mint> R(MAX), E(MAX);
    R[1] = 1, R[2] = 1;
    E[1] = 1, E[2] = 3;

    for(int i = 3; i < MAX; i++){
        R[i] = R[i-1] + R[i-2];
        E[i] = E[i-1] + E[i-2];
    }

    int q; cin >> q;
    while(q--){
        int n; cin >> n;
        mint ans = 5 * R[n] * R[n] - E[n] * E[n];
        cout << ans.val() << endn;
    }
    return 0;
}
0