結果
問題 | No.2605 Pickup Parentheses |
ユーザー | 👑 hos.lyric |
提出日時 | 2024-01-12 21:27:09 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 178 ms / 2,000 ms |
コード長 | 10,924 bytes |
コンパイル時間 | 1,519 ms |
コンパイル使用メモリ | 125,644 KB |
実行使用メモリ | 32,304 KB |
最終ジャッジ日時 | 2024-09-30 06:14:27 |
合計ジャッジ時間 | 5,478 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 7 ms
8,316 KB |
testcase_01 | AC | 8 ms
8,256 KB |
testcase_02 | AC | 8 ms
8,276 KB |
testcase_03 | AC | 8 ms
8,416 KB |
testcase_04 | AC | 7 ms
8,388 KB |
testcase_05 | AC | 9 ms
8,392 KB |
testcase_06 | AC | 9 ms
8,416 KB |
testcase_07 | AC | 8 ms
8,468 KB |
testcase_08 | AC | 9 ms
8,520 KB |
testcase_09 | AC | 8 ms
8,420 KB |
testcase_10 | AC | 9 ms
8,516 KB |
testcase_11 | AC | 9 ms
8,388 KB |
testcase_12 | AC | 8 ms
8,260 KB |
testcase_13 | AC | 8 ms
8,388 KB |
testcase_14 | AC | 8 ms
8,392 KB |
testcase_15 | AC | 8 ms
8,392 KB |
testcase_16 | AC | 8 ms
8,256 KB |
testcase_17 | AC | 8 ms
8,352 KB |
testcase_18 | AC | 67 ms
14,896 KB |
testcase_19 | AC | 37 ms
11,572 KB |
testcase_20 | AC | 14 ms
9,156 KB |
testcase_21 | AC | 12 ms
8,776 KB |
testcase_22 | AC | 9 ms
8,388 KB |
testcase_23 | AC | 70 ms
14,732 KB |
testcase_24 | AC | 14 ms
8,900 KB |
testcase_25 | AC | 85 ms
16,840 KB |
testcase_26 | AC | 92 ms
17,832 KB |
testcase_27 | AC | 59 ms
13,928 KB |
testcase_28 | AC | 49 ms
13,336 KB |
testcase_29 | AC | 15 ms
9,244 KB |
testcase_30 | AC | 27 ms
10,560 KB |
testcase_31 | AC | 26 ms
10,412 KB |
testcase_32 | AC | 14 ms
9,048 KB |
testcase_33 | AC | 51 ms
13,360 KB |
testcase_34 | AC | 49 ms
13,180 KB |
testcase_35 | AC | 31 ms
10,844 KB |
testcase_36 | AC | 42 ms
12,228 KB |
testcase_37 | AC | 42 ms
12,100 KB |
testcase_38 | AC | 19 ms
9,408 KB |
testcase_39 | AC | 11 ms
8,556 KB |
testcase_40 | AC | 39 ms
11,872 KB |
testcase_41 | AC | 36 ms
11,372 KB |
testcase_42 | AC | 54 ms
13,024 KB |
testcase_43 | AC | 15 ms
9,188 KB |
testcase_44 | AC | 13 ms
9,052 KB |
testcase_45 | AC | 6 ms
8,328 KB |
testcase_46 | AC | 10 ms
8,504 KB |
testcase_47 | AC | 7 ms
8,388 KB |
testcase_48 | AC | 7 ms
8,516 KB |
testcase_49 | AC | 32 ms
10,848 KB |
testcase_50 | AC | 17 ms
9,284 KB |
testcase_51 | AC | 20 ms
9,796 KB |
testcase_52 | AC | 22 ms
9,784 KB |
testcase_53 | AC | 26 ms
10,368 KB |
testcase_54 | AC | 17 ms
9,336 KB |
testcase_55 | AC | 23 ms
9,828 KB |
testcase_56 | AC | 10 ms
8,524 KB |
testcase_57 | AC | 22 ms
9,668 KB |
testcase_58 | AC | 178 ms
32,304 KB |
testcase_59 | AC | 69 ms
15,228 KB |
testcase_60 | AC | 84 ms
15,920 KB |
testcase_61 | AC | 82 ms
16,336 KB |
testcase_62 | AC | 98 ms
18,104 KB |
testcase_63 | AC | 88 ms
17,068 KB |
testcase_64 | AC | 109 ms
20,172 KB |
testcase_65 | AC | 75 ms
15,448 KB |
testcase_66 | AC | 165 ms
28,708 KB |
testcase_67 | AC | 85 ms
16,324 KB |
testcase_68 | AC | 9 ms
8,392 KB |
testcase_69 | AC | 8 ms
8,260 KB |
testcase_70 | AC | 9 ms
8,284 KB |
ソースコード
#include <cassert> #include <cmath> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <bitset> #include <complex> #include <deque> #include <functional> #include <iostream> #include <limits> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using Int = long long; template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; }; template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; } template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; } template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; } template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; } #define COLOR(s) ("\x1b[" s "m") //////////////////////////////////////////////////////////////////////////////// template <unsigned M_> struct ModInt { static constexpr unsigned M = M_; unsigned x; constexpr ModInt() : x(0U) {} constexpr ModInt(unsigned x_) : x(x_ % M) {} constexpr ModInt(unsigned long long x_) : x(x_ % M) {} constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {} constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {} ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; } ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; } ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; } ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); } ModInt pow(long long e) const { if (e < 0) return inv().pow(-e); ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b; } ModInt inv() const { unsigned a = M, b = x; int y = 0, z = 1; for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; } assert(a == 1U); return ModInt(y); } ModInt operator+() const { return *this; } ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; } ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); } ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); } ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); } ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); } template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); } template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); } template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); } template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); } explicit operator bool() const { return x; } bool operator==(const ModInt &a) const { return (x == a.x); } bool operator!=(const ModInt &a) const { return (x != a.x); } friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; } }; //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// constexpr unsigned MO = 998244353U; constexpr unsigned MO2 = 2U * MO; constexpr int FFT_MAX = 23; using Mint = ModInt<MO>; constexpr Mint FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U, 922799308U, 781712469U, 476477967U, 166035806U, 258648936U, 584193783U, 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U, 996173970U, 363395222U, 565042129U, 733596141U, 267099868U, 15311432U}; constexpr Mint INV_FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U, 609441965U, 135236158U, 304459705U, 685443576U, 381598368U, 335559352U, 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U, 121392023U, 704923114U, 950391366U, 428961804U, 382752275U, 469870224U}; constexpr Mint FFT_RATIOS[FFT_MAX] = {911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U, 238493703U, 975955924U, 603855026U, 856644456U, 131300601U, 842657263U, 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U, 743006876U, 741047443U, 56250497U, 867605899U}; constexpr Mint INV_FFT_RATIOS[FFT_MAX] = {86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U, 155456985U, 797128860U, 90816748U, 860285882U, 927414960U, 354738543U, 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U, 438932459U, 359477183U, 824071951U, 103369235U}; // as[rev(i)] <- \sum_j \zeta^(ij) as[j] void fft(Mint *as, int n) { assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX); int m = n; if (m >>= 1) { for (int i = 0; i < m; ++i) { const unsigned x = as[i + m].x; // < MO as[i + m].x = as[i].x + MO - x; // < 2 MO as[i].x += x; // < 2 MO } } if (m >>= 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + m; ++i) { const unsigned x = (prod * as[i + m]).x; // < MO as[i + m].x = as[i].x + MO - x; // < 3 MO as[i].x += x; // < 3 MO } prod *= FFT_RATIOS[__builtin_ctz(++h)]; } } for (; m; ) { if (m >>= 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + m; ++i) { const unsigned x = (prod * as[i + m]).x; // < MO as[i + m].x = as[i].x + MO - x; // < 4 MO as[i].x += x; // < 4 MO } prod *= FFT_RATIOS[__builtin_ctz(++h)]; } } if (m >>= 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + m; ++i) { const unsigned x = (prod * as[i + m]).x; // < MO as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO as[i + m].x = as[i].x + MO - x; // < 3 MO as[i].x += x; // < 3 MO } prod *= FFT_RATIOS[__builtin_ctz(++h)]; } } } for (int i = 0; i < n; ++i) { as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO as[i].x = (as[i].x >= MO) ? (as[i].x - MO) : as[i].x; // < MO } } // as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)] void invFft(Mint *as, int n) { assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX); int m = 1; if (m < n >> 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + m; ++i) { const unsigned long long y = as[i].x + MO - as[i + m].x; // < 2 MO as[i].x += as[i + m].x; // < 2 MO as[i + m].x = (prod.x * y) % MO; // < MO } prod *= INV_FFT_RATIOS[__builtin_ctz(++h)]; } m <<= 1; } for (; m < n >> 1; m <<= 1) { Mint prod = 1U; for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) { for (int i = i0; i < i0 + (m >> 1); ++i) { const unsigned long long y = as[i].x + MO2 - as[i + m].x; // < 4 MO as[i].x += as[i + m].x; // < 4 MO as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO as[i + m].x = (prod.x * y) % MO; // < MO } for (int i = i0 + (m >> 1); i < i0 + m; ++i) { const unsigned long long y = as[i].x + MO - as[i + m].x; // < 2 MO as[i].x += as[i + m].x; // < 2 MO as[i + m].x = (prod.x * y) % MO; // < MO } prod *= INV_FFT_RATIOS[__builtin_ctz(++h)]; } } if (m < n) { for (int i = 0; i < m; ++i) { const unsigned y = as[i].x + MO2 - as[i + m].x; // < 4 MO as[i].x += as[i + m].x; // < 4 MO as[i + m].x = y; // < 4 MO } } const Mint invN = Mint(n).inv(); for (int i = 0; i < n; ++i) { as[i] *= invN; } } void fft(vector<Mint> &as) { fft(as.data(), as.size()); } void invFft(vector<Mint> &as) { invFft(as.data(), as.size()); } vector<Mint> convolve(vector<Mint> as, vector<Mint> bs) { if (as.empty() || bs.empty()) return {}; const int len = as.size() + bs.size() - 1; int n = 1; for (; n < len; n <<= 1) {} as.resize(n); fft(as); bs.resize(n); fft(bs); for (int i = 0; i < n; ++i) as[i] *= bs[i]; invFft(as); as.resize(len); return as; } vector<Mint> square(vector<Mint> as) { if (as.empty()) return {}; const int len = as.size() + as.size() - 1; int n = 1; for (; n < len; n <<= 1) {} as.resize(n); fft(as); for (int i = 0; i < n; ++i) as[i] *= as[i]; invFft(as); as.resize(len); return as; } //////////////////////////////////////////////////////////////////////////////// constexpr int LIM_INV = 400'010; Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV]; void prepare() { inv[1] = 1; for (int i = 2; i < LIM_INV; ++i) { inv[i] = -((Mint::M / i) * inv[Mint::M % i]); } fac[0] = invFac[0] = 1; for (int i = 1; i < LIM_INV; ++i) { fac[i] = fac[i - 1] * i; invFac[i] = invFac[i - 1] * inv[i]; } } Mint binom(Int n, Int k) { if (n < 0) { if (k >= 0) { return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k); } else if (n - k >= 0) { return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k); } else { return 0; } } else { if (0 <= k && k <= n) { assert(n < LIM_INV); return fac[n] * invFac[k] * invFac[n - k]; } else { return 0; } } } Mint cat(int n) { return fac[2 * n] * invFac[n] * invFac[n + 1]; } int N, M; vector<int> L, R; int main() { prepare(); for (; ~scanf("%d%d", &N, &M); ) { L.resize(M); R.resize(M); for (int i = 0; i < M; ++i) { scanf("%d%d", &L[i], &R[i]); --L[i]; } vector<vector<Mint>> fss; for (int i = 0; i < M; ++i) if ((R[i] - L[i]) % 2 == 0) { const int k = (R[i] - L[i]) / 2; vector<Mint> fs(k + 1, 0); fs[0] += 1; fs[k] -= cat(k); fss.push_back(fs); } if (!fss.size()) { fss.push_back({1}); } const int fssLen = fss.size(); fss.resize(2 * fssLen - 1); for (int i = 0; i < fssLen - 1; ++i) { fss[fssLen + i] = convolve(fss[i << 1], fss[i << 1 | 1]); } const auto &prod = fss.back(); Mint ans = 0; if (N % 2 == 0) { for (int k = 0; k < (int)prod.size(); ++k) { ans += prod[k] * cat(N / 2 - k); } } printf("%u\n", ans.x); } return 0; }