結果
問題 | No.2604 Initial Motion |
ユーザー | 👑 emthrm |
提出日時 | 2024-01-12 21:41:04 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 675 ms / 3,000 ms |
コード長 | 5,252 bytes |
コンパイル時間 | 3,377 ms |
コンパイル使用メモリ | 263,024 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-27 21:39:49 |
合計ジャッジ時間 | 15,393 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 21 ms
6,944 KB |
testcase_04 | AC | 20 ms
6,940 KB |
testcase_05 | AC | 20 ms
6,940 KB |
testcase_06 | AC | 20 ms
6,940 KB |
testcase_07 | AC | 21 ms
6,940 KB |
testcase_08 | AC | 20 ms
6,940 KB |
testcase_09 | AC | 20 ms
6,944 KB |
testcase_10 | AC | 20 ms
6,940 KB |
testcase_11 | AC | 21 ms
6,940 KB |
testcase_12 | AC | 20 ms
6,940 KB |
testcase_13 | AC | 539 ms
6,940 KB |
testcase_14 | AC | 315 ms
6,940 KB |
testcase_15 | AC | 231 ms
6,940 KB |
testcase_16 | AC | 466 ms
6,944 KB |
testcase_17 | AC | 675 ms
6,944 KB |
testcase_18 | AC | 642 ms
6,944 KB |
testcase_19 | AC | 604 ms
6,944 KB |
testcase_20 | AC | 447 ms
6,940 KB |
testcase_21 | AC | 335 ms
6,944 KB |
testcase_22 | AC | 600 ms
6,940 KB |
testcase_23 | AC | 369 ms
6,940 KB |
testcase_24 | AC | 508 ms
6,940 KB |
testcase_25 | AC | 624 ms
6,940 KB |
testcase_26 | AC | 423 ms
6,944 KB |
testcase_27 | AC | 260 ms
6,940 KB |
testcase_28 | AC | 383 ms
6,944 KB |
testcase_29 | AC | 526 ms
6,944 KB |
testcase_30 | AC | 296 ms
6,944 KB |
testcase_31 | AC | 421 ms
6,944 KB |
testcase_32 | AC | 384 ms
6,944 KB |
testcase_33 | AC | 4 ms
6,940 KB |
testcase_34 | AC | 309 ms
6,940 KB |
testcase_35 | AC | 282 ms
6,944 KB |
testcase_36 | AC | 297 ms
6,940 KB |
testcase_37 | AC | 3 ms
6,940 KB |
testcase_38 | AC | 2 ms
6,944 KB |
testcase_39 | AC | 2 ms
6,944 KB |
testcase_40 | AC | 232 ms
6,940 KB |
testcase_41 | AC | 236 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; // constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <typename T, typename U> struct MinimumCostSTFlow { struct Edge { int dst, rev; T cap; U cost; explicit Edge(const int dst, const T cap, const U cost, const int rev) : dst(dst), rev(rev), cap(cap), cost(cost) {} }; const U uinf; std::vector<std::vector<Edge>> graph; explicit MinimumCostSTFlow(const int n, const U uinf = std::numeric_limits<U>::max()) : uinf(uinf), graph(n), tinf(std::numeric_limits<T>::max()), n(n), has_negative_edge(false), prev_v(n, -1), prev_e(n, -1), dist(n), potential(n, 0) {} void add_edge(const int src, const int dst, const T cap, const U cost) { has_negative_edge |= cost < 0; graph[src].emplace_back(dst, cap, cost, graph[dst].size()); graph[dst].emplace_back(src, 0, -cost, graph[src].size() - 1); } U solve(const int s, const int t, T flow) { if (flow == 0) [[unlikely]] return 0; U res = 0; has_negative_edge ? bellman_ford(s) : dijkstra(s); while (true) { if (dist[t] == uinf) return uinf; res += calc(s, t, &flow); if (flow == 0) break; dijkstra(s); } return res; } U solve(const int s, const int t) { U res = 0; T flow = tinf; bellman_ford(s); while (potential[t] < 0 && dist[t] != uinf) { res += calc(s, t, &flow); dijkstra(s); } return res; } std::pair<T, U> minimum_cost_maximum_flow(const int s, const int t, const T flow) { if (flow == 0) [[unlikely]] return {0, 0}; T f = flow; U cost = 0; has_negative_edge ? bellman_ford(s) : dijkstra(s); while (dist[t] != uinf) { cost += calc(s, t, &f); if (f == 0) break; dijkstra(s); } return {flow - f, cost}; } private: const T tinf; const int n; bool has_negative_edge; std::vector<int> prev_v, prev_e; std::vector<U> dist, potential; std::priority_queue<std::pair<U, int>, std::vector<std::pair<U, int>>, std::greater<std::pair<U, int>>> que; void bellman_ford(const int s) { std::fill(dist.begin(), dist.end(), uinf); dist[s] = 0; bool is_updated = true; for (int step = 0; step < n && is_updated; ++step) { is_updated = false; for (int i = 0; i < n; ++i) { if (dist[i] == uinf) continue; for (int j = 0; std::cmp_less(j, graph[i].size()); ++j) { const Edge& e = graph[i][j]; if (e.cap > 0 && dist[e.dst] > dist[i] + e.cost) { dist[e.dst] = dist[i] + e.cost; prev_v[e.dst] = i; prev_e[e.dst] = j; is_updated = true; } } } } assert(!is_updated); for (int i = 0; i < n; ++i) { if (dist[i] != uinf) potential[i] += dist[i]; } } void dijkstra(const int s) { std::fill(dist.begin(), dist.end(), uinf); dist[s] = 0; que.emplace(0, s); while (!que.empty()) { const auto [d, ver] = que.top(); que.pop(); if (dist[ver] < d) continue; for (int i = 0; std::cmp_less(i, graph[ver].size()); ++i) { const Edge& e = graph[ver][i]; const U nxt = dist[ver] + e.cost + potential[ver] - potential[e.dst]; if (e.cap > 0 && dist[e.dst] > nxt) { dist[e.dst] = nxt; prev_v[e.dst] = ver; prev_e[e.dst] = i; que.emplace(dist[e.dst], e.dst); } } } for (int i = 0; i < n; ++i) { if (dist[i] != uinf) potential[i] += dist[i]; } } U calc(const int s, const int t, T* flow) { T f = *flow; for (int v = t; v != s; v = prev_v[v]) { f = std::min(f, graph[prev_v[v]][prev_e[v]].cap); } *flow -= f; for (int v = t; v != s; v = prev_v[v]) { Edge& e = graph[prev_v[v]][prev_e[v]]; e.cap -= f; graph[v][e.rev].cap += f; } return potential[t] * f; } }; int main() { int k, n, m; cin >> k >> n >> m; vector<int> players(n); REP(_, k) { int a; cin >> a; --a; ++players[a]; } MinimumCostSTFlow<int, ll> mcf(n + 2); REP(i, n) { if (players[i] > 0) mcf.add_edge(n, i, players[i], 0); } REP(i, n) { int b; cin >> b; mcf.add_edge(i, n + 1, b, 0); } while (m--) { int u, v; ll d; cin >> u >> v >> d; --u; --v; mcf.add_edge(u, v, k, d); mcf.add_edge(v, u, k, d); } cout << mcf.solve(n, n + 1, k) << '\n'; return 0; }