結果

問題 No.2605 Pickup Parentheses
ユーザー SSRS
提出日時 2024-01-12 21:42:10
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 138 ms / 2,000 ms
コード長 15,911 bytes
コンパイル時間 2,743 ms
コンパイル使用メモリ 219,060 KB
最終ジャッジ日時 2025-02-18 17:57:46
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 68
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
const long long MOD = 998244353;
//https://judge.yosupo.jp/submission/101681
template <int mod>
struct Mod_Int {
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
static int get_mod() { return mod; }
Mod_Int &operator+=(const Mod_Int &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator-=(const Mod_Int &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator*=(const Mod_Int &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator/=(const Mod_Int &p) {
*this *= p.inverse();
return *this;
}
Mod_Int &operator++() { return *this += Mod_Int(1); }
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator--() { return *this -= Mod_Int(1); }
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const { return Mod_Int(-x); }
Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }
Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }
Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }
Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }
bool operator==(const Mod_Int &p) const { return x == p.x; }
bool operator!=(const Mod_Int &p) const { return x != p.x; }
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }
friend istream &operator>>(istream &is, Mod_Int &p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
using mint = Mod_Int<MOD>;
template <typename T>
struct Number_Theoretic_Transform {
static int max_base;
static T root;
static vector<T> r, ir;
Number_Theoretic_Transform() {}
static void init() {
if (!r.empty()) return;
int mod = T::get_mod();
int tmp = mod - 1;
root = 2;
while (root.pow(tmp >> 1) == 1) root++;
max_base = 0;
while (tmp % 2 == 0) tmp >>= 1, max_base++;
r.resize(max_base), ir.resize(max_base);
for (int i = 0; i < max_base; i++) {
r[i] = -root.pow((mod - 1) >> (i + 2)); // r[i] := 1 2^(i+2)
ir[i] = r[i].inverse(); // ir[i] := 1/r[i]
}
}
static void ntt(vector<T> &a) {
init();
int n = a.size();
assert((n & (n - 1)) == 0);
assert(n <= (1 << max_base));
for (int k = n; k >>= 1;) {
T w = 1;
for (int s = 0, t = 0; s < n; s += 2 * k) {
for (int i = s, j = s + k; i < s + k; i++, j++) {
T x = a[i], y = w * a[j];
a[i] = x + y, a[j] = x - y;
}
w *= r[__builtin_ctz(++t)];
}
}
}
static void intt(vector<T> &a) {
init();
int n = a.size();
assert((n & (n - 1)) == 0);
assert(n <= (1 << max_base));
for (int k = 1; k < n; k <<= 1) {
T w = 1;
for (int s = 0, t = 0; s < n; s += 2 * k) {
for (int i = s, j = s + k; i < s + k; i++, j++) {
T x = a[i], y = a[j];
a[i] = x + y, a[j] = w * (x - y);
}
w *= ir[__builtin_ctz(++t)];
}
}
T inv = T(n).inverse();
for (auto &e : a) e *= inv;
}
static vector<T> convolve(vector<T> a, vector<T> b) {
if (a.empty() || b.empty()) return {};
int k = (int)a.size() + (int)b.size() - 1, n = 1;
while (n < k) n <<= 1;
a.resize(n), b.resize(n);
ntt(a), ntt(b);
for (int i = 0; i < n; i++) a[i] *= b[i];
intt(a), a.resize(k);
return a;
}
};
template <typename T>
int Number_Theoretic_Transform<T>::max_base = 0;
template <typename T>
T Number_Theoretic_Transform<T>::root = T();
template <typename T>
vector<T> Number_Theoretic_Transform<T>::r = vector<T>();
template <typename T>
vector<T> Number_Theoretic_Transform<T>::ir = vector<T>();
using NTT = Number_Theoretic_Transform<mint>;
template <typename T>
struct Formal_Power_Series : vector<T> {
using NTT_ = Number_Theoretic_Transform<T>;
using vector<T>::vector;
Formal_Power_Series(const vector<T> &f) : vector<T>(f) {}
// f(x) mod x^n
Formal_Power_Series pre(int n) const {
Formal_Power_Series ret(begin(*this), begin(*this) + min((int)this->size(), n));
ret.resize(n, 0);
return ret;
}
// f(1/x)x^{n-1}
Formal_Power_Series rev(int n = -1) const {
Formal_Power_Series ret = *this;
if (n != -1) ret.resize(n, 0);
reverse(begin(ret), end(ret));
return ret;
}
void normalize() {
while (!this->empty() && this->back() == 0) this->pop_back();
}
Formal_Power_Series operator-() const {
Formal_Power_Series ret = *this;
for (int i = 0; i < (int)ret.size(); i++) ret[i] = -ret[i];
return ret;
}
Formal_Power_Series &operator+=(const T &t) {
if (this->empty()) this->resize(1, 0);
(*this)[0] += t;
return *this;
}
Formal_Power_Series &operator+=(const Formal_Power_Series &g) {
if (g.size() > this->size()) this->resize(g.size());
for (int i = 0; i < (int)g.size(); i++) (*this)[i] += g[i];
this->normalize();
return *this;
}
Formal_Power_Series &operator-=(const T &t) {
if (this->empty()) this->resize(1, 0);
*this[0] -= t;
return *this;
}
Formal_Power_Series &operator-=(const Formal_Power_Series &g) {
if (g.size() > this->size()) this->resize(g.size());
for (int i = 0; i < (int)g.size(); i++) (*this)[i] -= g[i];
this->normalize();
return *this;
}
Formal_Power_Series &operator*=(const T &t) {
for (int i = 0; i < (int)this->size(); i++) (*this)[i] *= t;
return *this;
}
Formal_Power_Series &operator*=(const Formal_Power_Series &g) {
if (empty(*this) || empty(g)) {
this->clear();
return *this;
}
return *this = NTT_::convolve(*this, g);
}
Formal_Power_Series &operator/=(const T &t) {
assert(t != 0);
T inv = t.inverse();
return *this *= inv;
}
// f(x) g(x)
Formal_Power_Series &operator/=(const Formal_Power_Series &g) {
if (g.size() > this->size()) {
this->clear();
return *this;
}
int n = this->size(), m = g.size();
return *this = (rev() * g.rev().inv(n - m + 1)).pre(n - m + 1).rev();
}
// f(x) g(x)
Formal_Power_Series &operator%=(const Formal_Power_Series &g) { return *this -= (*this / g) * g; }
// f(x)/x^k
Formal_Power_Series &operator<<=(int k) {
Formal_Power_Series ret(k, 0);
ret.insert(end(ret), begin(*this), end(*this));
return *this = ret;
}
// f(x)x^k
Formal_Power_Series &operator>>=(int k) {
Formal_Power_Series ret;
ret.insert(end(ret), begin(*this) + k, end(*this));
return *this = ret;
}
Formal_Power_Series operator+(const T &x) const { return Formal_Power_Series(*this) += x; }
Formal_Power_Series operator+(const Formal_Power_Series &v) const { return Formal_Power_Series(*this) += v; }
Formal_Power_Series operator-(const T &x) const { return Formal_Power_Series(*this) -= x; }
Formal_Power_Series operator-(const Formal_Power_Series &v) const { return Formal_Power_Series(*this) -= v; }
Formal_Power_Series operator*(const T &x) const { return Formal_Power_Series(*this) *= x; }
Formal_Power_Series operator*(const Formal_Power_Series &v) const { return Formal_Power_Series(*this) *= v; }
Formal_Power_Series operator/(const T &x) const { return Formal_Power_Series(*this) /= x; }
Formal_Power_Series operator/(const Formal_Power_Series &v) const { return Formal_Power_Series(*this) /= v; }
Formal_Power_Series operator%(const Formal_Power_Series &v) const { return Formal_Power_Series(*this) %= v; }
Formal_Power_Series operator<<(int x) const { return Formal_Power_Series(*this) <<= x; }
Formal_Power_Series operator>>(int x) const { return Formal_Power_Series(*this) >>= x; }
// f(c)
T val(const T &c) const {
T ret = 0;
for (int i = (int)this->size() - 1; i >= 0; i--) ret *= c, ret += (*this)[i];
return ret;
}
// df/dx
Formal_Power_Series derivative() const {
if (empty(*this)) return *this;
int n = this->size();
Formal_Power_Series ret(n - 1);
for (int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * i;
return ret;
}
// ∫f(x)dx
Formal_Power_Series integral() const {
if (empty(*this)) return *this;
int n = this->size();
vector<T> inv(n + 1, 0);
inv[1] = 1;
int mod = T::get_mod();
for (int i = 2; i <= n; i++) inv[i] = -inv[mod % i] * T(mod / i);
Formal_Power_Series ret(n + 1, 0);
for (int i = 0; i < n; i++) ret[i + 1] = (*this)[i] * inv[i + 1];
return ret;
}
// 1/f(x) mod x^n (f[0] != 0)
Formal_Power_Series inv(int n = -1) const {
assert((*this)[0] != 0);
if (n == -1) n = this->size();
Formal_Power_Series ret(1, (*this)[0].inverse());
for (int m = 1; m < n; m <<= 1) {
Formal_Power_Series f = pre(2 * m), g = ret;
f.resize(2 * m), g.resize(2 * m);
NTT_::ntt(f), NTT_::ntt(g);
Formal_Power_Series h(2 * m);
for (int i = 0; i < 2 * m; i++) h[i] = f[i] * g[i];
NTT_::intt(h);
for (int i = 0; i < m; i++) h[i] = 0;
NTT_::ntt(h);
for (int i = 0; i < 2 * m; i++) h[i] *= g[i];
NTT_::intt(h);
for (int i = 0; i < m; i++) h[i] = 0;
ret -= h;
}
ret.resize(n);
return ret;
}
// log(f(x)) mod x^n (f[0] = 1)
Formal_Power_Series log(int n = -1) const {
assert((*this)[0] == 1);
if (n == -1) n = this->size();
Formal_Power_Series ret = (derivative() * inv(n)).pre(n - 1).integral();
ret.resize(n);
return ret;
}
// exp(f(x)) mod x^n (f[0] = 0)
Formal_Power_Series exp(int n = -1) const {
assert((*this)[0] == 0);
if (n == -1) n = this->size();
vector<T> inv(2 * n + 1, 0);
inv[1] = 1;
int mod = T::get_mod();
for (int i = 2; i <= 2 * n; i++) inv[i] = -inv[mod % i] * T(mod / i);
auto inplace_integral = [inv](Formal_Power_Series &f) {
if (empty(f)) return;
int n = f.size();
f.insert(begin(f), 0);
for (int i = 1; i <= n; i++) f[i] *= inv[i];
};
auto inplace_derivative = [](Formal_Power_Series &f) {
if (empty(f)) return;
int n = f.size();
f.erase(begin(f));
for (int i = 0; i < n - 1; i++) f[i] *= T(i + 1);
};
Formal_Power_Series ret{1, this->size() > 1 ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
for (int m = 2; m < n; m *= 2) {
auto y = ret;
y.resize(2 * m);
NTT_::ntt(y);
z1 = z2;
Formal_Power_Series z(m);
for (int i = 0; i < m; i++) z[i] = y[i] * z1[i];
NTT_::intt(z);
fill(begin(z), begin(z) + m / 2, 0);
NTT_::ntt(z);
for (int i = 0; i < m; i++) z[i] *= -z1[i];
NTT_::intt(z);
c.insert(end(c), begin(z) + m / 2, end(z));
z2 = c, z2.resize(2 * m);
NTT_::ntt(z2);
Formal_Power_Series x(begin(*this), begin(*this) + min((int)this->size(), m));
inplace_derivative(x);
x.resize(m, 0);
NTT_::ntt(x);
for (int i = 0; i < m; i++) x[i] *= y[i];
NTT_::intt(x);
x -= ret.derivative(), x.resize(2 * m);
for (int i = 0; i < m - 1; i++) x[m + i] = x[i], x[i] = 0;
NTT_::ntt(x);
for (int i = 0; i < 2 * m; i++) x[i] *= z2[i];
NTT_::intt(x);
x.pop_back();
inplace_integral(x);
for (int i = m; i < min((int)this->size(), 2 * m); i++) x[i] += (*this)[i];
fill(begin(x), begin(x) + m, 0);
NTT_::ntt(x);
for (int i = 0; i < 2 * m; i++) x[i] *= y[i];
NTT_::intt(x);
ret.insert(end(ret), begin(x) + m, end(x));
}
ret.resize(n);
return ret;
}
// f(x)^k mod x^n
Formal_Power_Series pow(long long k, int n = -1) const {
if (n == -1) n = this->size();
int m = this->size();
for (int i = 0; i < m; i++) {
if ((*this)[i] == 0) continue;
T rev = (*this)[i].inverse();
Formal_Power_Series C(*this * rev), D(m - i, 0);
for (int j = i; j < m; j++) D[j - i] = C[j];
D = (D.log() * k).exp() * ((*this)[i].pow(k));
Formal_Power_Series E(n, 0);
if (i > 0 && k > n / i) return E;
long long S = i * k;
for (int j = 0; j + S < n && j < D.size(); j++) E[j + S] = D[j];
E.resize(n);
return E;
}
return Formal_Power_Series(n, 0);
}
// f(x+c)
Formal_Power_Series Taylor_shift(T c) const {
int n = this->size();
vector<T> ifac(n, 1);
Formal_Power_Series f(n), g(n);
for (int i = 0; i < n; i++) {
f[n - 1 - i] = (*this)[i] * ifac[n - 1];
if (i < n - 1) ifac[n - 1] *= i + 1;
}
ifac[n - 1] = ifac[n - 1].inverse();
for (int i = n - 1; i > 0; i--) ifac[i - 1] = ifac[i] * i;
T pw = 1;
for (int i = 0; i < n; i++) {
g[i] = pw * ifac[i];
pw *= c;
}
f *= g;
Formal_Power_Series b(n);
for (int i = 0; i < n; i++) b[i] = f[n - 1 - i] * ifac[i];
return b;
}
};
using fps = Formal_Power_Series<mint>;
int main(){
int N, M;
cin >> N >> M;
vector<int> L(M), R(M);
for (int i = 0; i < M; i++){
cin >> L[i] >> R[i];
L[i]--;
}
if (N % 2 == 1){
cout << 0 << endl;
} else {
N /= 2;
vector<long long> inv(N + 2);
inv[1] = 1;
for (int i = 2; i <= N + 1; i++){
inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
}
vector<long long> cat(N + 1);
cat[0] = 1;
cat[1] = 1;
for (int i = 1; i < N; i++){
cat[i + 1] = cat[i] * 2 * (2 * i + 1) % MOD * inv[i + 2] % MOD;
}
vector<int> cnt(N + 1, 0);
for (int i = 0; i < M; i++){
if ((R[i] - L[i]) % 2 == 0){
cnt[(R[i] - L[i]) / 2]++;
}
}
vector<long long> f(N + 1, 0);
for (int i = 1; i <= N; i++){
long long tmp = 1;
for (int j = 1; i * j <= N; j++){
tmp *= cat[i];
tmp %= MOD;
f[i * j] += MOD - tmp * inv[j] % MOD * cnt[i] % MOD;
f[i * j] %= MOD;
}
}
fps f2(N + 1);
for (int i = 0; i <= N; i++){
f2[i] = f[i];
}
fps g = f2.exp();
long long ans = 0;
for (int i = 0; i <= N; i++){
ans += g[i].x * cat[N - i] % MOD;
ans %= MOD;
}
cout << ans << endl;
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0