結果
問題 | No.2605 Pickup Parentheses |
ユーザー | tokusakurai |
提出日時 | 2024-01-12 22:28:27 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 11,806 bytes |
コンパイル時間 | 2,438 ms |
コンパイル使用メモリ | 215,008 KB |
実行使用メモリ | 814,080 KB |
最終ジャッジ日時 | 2024-09-27 23:01:17 |
合計ジャッジ時間 | 13,444 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 4 ms
6,940 KB |
testcase_04 | AC | 4 ms
6,940 KB |
testcase_05 | AC | 4 ms
6,944 KB |
testcase_06 | AC | 6 ms
6,944 KB |
testcase_07 | AC | 5 ms
6,944 KB |
testcase_08 | AC | 6 ms
6,944 KB |
testcase_09 | AC | 3 ms
6,944 KB |
testcase_10 | AC | 4 ms
6,940 KB |
testcase_11 | AC | 4 ms
6,940 KB |
testcase_12 | AC | 3 ms
6,940 KB |
testcase_13 | AC | 3 ms
6,940 KB |
testcase_14 | AC | 4 ms
6,940 KB |
testcase_15 | AC | 5 ms
6,940 KB |
testcase_16 | AC | 3 ms
6,940 KB |
testcase_17 | AC | 4 ms
6,940 KB |
testcase_18 | AC | 223 ms
9,388 KB |
testcase_19 | AC | 108 ms
6,940 KB |
testcase_20 | AC | 22 ms
6,940 KB |
testcase_21 | AC | 12 ms
6,940 KB |
testcase_22 | AC | 7 ms
6,944 KB |
testcase_23 | AC | 236 ms
8,692 KB |
testcase_24 | AC | 21 ms
6,944 KB |
testcase_25 | AC | 260 ms
9,140 KB |
testcase_26 | AC | 267 ms
9,124 KB |
testcase_27 | AC | 219 ms
9,008 KB |
testcase_28 | AC | 273 ms
9,464 KB |
testcase_29 | AC | 55 ms
6,940 KB |
testcase_30 | AC | 132 ms
7,120 KB |
testcase_31 | AC | 121 ms
6,940 KB |
testcase_32 | AC | 54 ms
6,944 KB |
testcase_33 | AC | 272 ms
10,240 KB |
testcase_34 | AC | 266 ms
9,720 KB |
testcase_35 | AC | 198 ms
8,084 KB |
testcase_36 | AC | 245 ms
9,124 KB |
testcase_37 | AC | 247 ms
8,792 KB |
testcase_38 | AC | 54 ms
6,940 KB |
testcase_39 | AC | 17 ms
6,940 KB |
testcase_40 | AC | 129 ms
8,044 KB |
testcase_41 | AC | 117 ms
9,436 KB |
testcase_42 | AC | 171 ms
9,616 KB |
testcase_43 | AC | 33 ms
6,940 KB |
testcase_44 | AC | 31 ms
6,944 KB |
testcase_45 | AC | 5 ms
6,940 KB |
testcase_46 | AC | 13 ms
6,944 KB |
testcase_47 | AC | 2 ms
6,940 KB |
testcase_48 | AC | 76 ms
8,812 KB |
testcase_49 | AC | 195 ms
9,056 KB |
testcase_50 | AC | 79 ms
6,940 KB |
testcase_51 | AC | 154 ms
9,392 KB |
testcase_52 | AC | 95 ms
7,004 KB |
testcase_53 | AC | 150 ms
9,224 KB |
testcase_54 | AC | 78 ms
6,940 KB |
testcase_55 | AC | 137 ms
9,548 KB |
testcase_56 | AC | 30 ms
6,940 KB |
testcase_57 | AC | 165 ms
9,556 KB |
testcase_58 | AC | 309 ms
10,820 KB |
testcase_59 | AC | 242 ms
9,508 KB |
testcase_60 | AC | 300 ms
9,740 KB |
testcase_61 | AC | 289 ms
9,824 KB |
testcase_62 | AC | 300 ms
9,724 KB |
testcase_63 | AC | 296 ms
9,848 KB |
testcase_64 | AC | 323 ms
10,092 KB |
testcase_65 | AC | 248 ms
9,888 KB |
testcase_66 | AC | 371 ms
10,208 KB |
testcase_67 | AC | 286 ms
9,960 KB |
testcase_68 | MLE | - |
testcase_69 | -- | - |
testcase_70 | -- | - |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; template <typename T> using minheap = priority_queue<T, vector<T>, greater<T>>; template <typename T> using maxheap = priority_queue<T>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <typename T> int flg(T x, int i) { return (x >> i) & 1; } int pct(int x) { return __builtin_popcount(x); } int pct(ll x) { return __builtin_popcountll(x); } int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template <typename T> void printn(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template <typename T> vector<int> id_sort(const vector<T> &v, bool greater = false) { int n = v.size(); vector<int> ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template <typename T> void reorder(vector<T> &a, const vector<int> &ord) { int n = a.size(); vector<T> b(n); for (int i = 0; i < n; i++) b[i] = a[ord[i]]; swap(a, b); } template <typename T> T floor(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? x / y : (x - y + 1) / y); } template <typename T> T ceil(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? (x + y - 1) / y : x / y); } template <typename S, typename T> pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first + q.first, p.second + q.second); } template <typename S, typename T> pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first - q.first, p.second - q.second); } template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); cerr << fixed << setprecision(15); } } io_setup; constexpr int inf = (1 << 30) - 1; constexpr ll INF = (1LL << 60) - 1; // constexpr int MOD = 1000000007; constexpr int MOD = 998244353; template <int mod> struct Mod_Int { int x; Mod_Int() : x(0) {} Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} static int get_mod() { return mod; } Mod_Int &operator+=(const Mod_Int &p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int &operator-=(const Mod_Int &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int &operator*=(const Mod_Int &p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int &operator/=(const Mod_Int &p) { *this *= p.inverse(); return *this; } Mod_Int &operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int &p) const { return x == p.x; } bool operator!=(const Mod_Int &p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; } friend istream &operator>>(istream &is, Mod_Int &p) { long long a; is >> a; p = Mod_Int<mod>(a); return is; } }; using mint = Mod_Int<MOD>; template <typename T> struct Combination { static vector<T> _fac, _ifac; Combination() {} static void init(int n) { _fac.resize(n + 1), _ifac.resize(n + 1); _fac[0] = 1; for (int i = 1; i <= n; i++) _fac[i] = _fac[i - 1] * i; _ifac[n] = _fac[n].inverse(); for (int i = n; i >= 1; i--) _ifac[i - 1] = _ifac[i] * i; } static T fac(int k) { return _fac[k]; } static T ifac(int k) { return _ifac[k]; } static T inv(int k) { return fac(k - 1) * ifac(k); } static T P(int n, int k) { if (k < 0 || n < k) return 0; return fac(n) * ifac(n - k); } static T C(int n, int k) { if (k < 0 || n < k) return 0; return fac(n) * ifac(n - k) * ifac(k); } // n 個の区別できる箱に、k 個の区別できない玉を入れる場合の数 static T H(int n, int k) { if (n < 0 || k < 0) return 0; return k == 0 ? 1 : C(n + k - 1, k); } // n 個の区別できる玉を、k 個の区別しない箱に、各箱に 1 個以上玉が入るように入れる場合の数 static T second_stirling_number(int n, int k) { T ret = 0; for (int i = 0; i <= k; i++) { T tmp = C(k, i) * T(i).pow(n); ret += ((k - i) & 1) ? -tmp : tmp; } return ret * ifac(k); } // n 個の区別できる玉を、k 個の区別しない箱に入れる場合の数 static T bell_number(int n, int k) { if (n == 0) return 1; k = min(k, n); vector<T> pref(k + 1); pref[0] = 1; for (int i = 1; i <= k; i++) { if (i & 1) { pref[i] = pref[i - 1] - ifac(i); } else { pref[i] = pref[i - 1] + ifac(i); } } T ret = 0; for (int i = 1; i <= k; i++) ret += T(i).pow(n) * ifac(i) * pref[k - i]; return ret; } }; template <typename T> vector<T> Combination<T>::_fac = vector<T>(); template <typename T> vector<T> Combination<T>::_ifac = vector<T>(); using comb = Combination<mint>; template <typename T> struct Number_Theoretic_Transform { static int max_base; static T root; static vector<T> r, ir; Number_Theoretic_Transform() {} static void init() { if (!r.empty()) return; int mod = T::get_mod(); int tmp = mod - 1; root = 2; while (root.pow(tmp >> 1) == 1) root++; max_base = 0; while (tmp % 2 == 0) tmp >>= 1, max_base++; r.resize(max_base), ir.resize(max_base); for (int i = 0; i < max_base; i++) { r[i] = -root.pow((mod - 1) >> (i + 2)); // r[i] := 1 の 2^(i+2) 乗根 ir[i] = r[i].inverse(); // ir[i] := 1/r[i] } } static void ntt(vector<T> &a) { init(); int n = a.size(); assert((n & (n - 1)) == 0); assert(n <= (1 << max_base)); for (int k = n; k >>= 1;) { T w = 1; for (int s = 0, t = 0; s < n; s += 2 * k) { for (int i = s, j = s + k; i < s + k; i++, j++) { T x = a[i], y = w * a[j]; a[i] = x + y, a[j] = x - y; } w *= r[__builtin_ctz(++t)]; } } } static void intt(vector<T> &a) { init(); int n = a.size(); assert((n & (n - 1)) == 0); assert(n <= (1 << max_base)); for (int k = 1; k < n; k <<= 1) { T w = 1; for (int s = 0, t = 0; s < n; s += 2 * k) { for (int i = s, j = s + k; i < s + k; i++, j++) { T x = a[i], y = a[j]; a[i] = x + y, a[j] = w * (x - y); } w *= ir[__builtin_ctz(++t)]; } } T inv = T(n).inverse(); for (auto &e : a) e *= inv; } static vector<T> convolve(vector<T> a, vector<T> b) { if (a.empty() || b.empty()) return {}; if (min(a.size(), b.size()) < 40) { int n = a.size(), m = b.size(); vector<T> c(n + m - 1, 0); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) c[i + j] += a[i] * b[j]; } return c; } int k = (int)a.size() + (int)b.size() - 1, n = 1; while (n < k) n <<= 1; a.resize(n, 0), b.resize(n, 0); ntt(a), ntt(b); for (int i = 0; i < n; i++) a[i] *= b[i]; intt(a), a.resize(k); return a; } }; template <typename T> int Number_Theoretic_Transform<T>::max_base = 0; template <typename T> T Number_Theoretic_Transform<T>::root = T(); template <typename T> vector<T> Number_Theoretic_Transform<T>::r = vector<T>(); template <typename T> vector<T> Number_Theoretic_Transform<T>::ir = vector<T>(); using NTT = Number_Theoretic_Transform<mint>; void solve() { int N, M; cin >> N >> M; comb::init(N * 2); vector<int> l(M), r(M), d(M); rep(i, M) { cin >> l[i] >> r[i]; l[i]--; d[i] = r[i] - l[i]; } auto catalan = [&](int n) -> mint { if (n % 2 != 0) return 0; return comb::C(n, n / 2) / (n / 2 + 1); }; // vector<vector<mint>> f(M); // rep(i, M) { // f[i].assign(d[i] + 1, 0); // f[i][0] = 1; // f[i][d[i]] = -catalan(d[i]); // } auto get = [&](int i) { vector<mint> f(d[i] + 1, 0); f[0] = 1; f[d[i]] = -catalan(d[i]); return f; }; auto rec = [&](auto &&rec, int L, int R) -> vector<mint> { if (R == L + 1) return get(L); int m = (L + R) / 2; return NTT::convolve(rec(rec, L, m), rec(rec, m, R)); }; auto g = rec(rec, 0, M); mint ans = 0; rep(i, min(N + 1, sz(g))) { ans += catalan(N - i) * g[i]; // } cout << ans << '\n'; } int main() { int T = 1; // cin >> T; while (T--) solve(); }