結果
問題 | No.2605 Pickup Parentheses |
ユーザー | Misuki |
提出日時 | 2024-01-12 22:35:19 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 318 ms / 2,000 ms |
コード長 | 13,438 bytes |
コンパイル時間 | 2,425 ms |
コンパイル使用メモリ | 213,936 KB |
実行使用メモリ | 15,504 KB |
最終ジャッジ日時 | 2024-09-30 06:27:23 |
合計ジャッジ時間 | 8,062 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 5 ms
6,820 KB |
testcase_01 | AC | 5 ms
6,820 KB |
testcase_02 | AC | 4 ms
6,820 KB |
testcase_03 | AC | 5 ms
6,816 KB |
testcase_04 | AC | 6 ms
6,820 KB |
testcase_05 | AC | 6 ms
6,816 KB |
testcase_06 | AC | 7 ms
6,820 KB |
testcase_07 | AC | 6 ms
6,820 KB |
testcase_08 | AC | 7 ms
6,816 KB |
testcase_09 | AC | 5 ms
6,820 KB |
testcase_10 | AC | 6 ms
6,816 KB |
testcase_11 | AC | 6 ms
6,816 KB |
testcase_12 | AC | 5 ms
6,820 KB |
testcase_13 | AC | 5 ms
6,816 KB |
testcase_14 | AC | 4 ms
6,816 KB |
testcase_15 | AC | 5 ms
6,820 KB |
testcase_16 | AC | 5 ms
6,820 KB |
testcase_17 | AC | 5 ms
6,816 KB |
testcase_18 | AC | 151 ms
10,028 KB |
testcase_19 | AC | 79 ms
8,176 KB |
testcase_20 | AC | 18 ms
6,816 KB |
testcase_21 | AC | 13 ms
6,820 KB |
testcase_22 | AC | 7 ms
6,820 KB |
testcase_23 | AC | 162 ms
10,212 KB |
testcase_24 | AC | 18 ms
6,820 KB |
testcase_25 | AC | 179 ms
10,716 KB |
testcase_26 | AC | 194 ms
11,372 KB |
testcase_27 | AC | 153 ms
10,824 KB |
testcase_28 | AC | 9 ms
6,816 KB |
testcase_29 | AC | 21 ms
6,816 KB |
testcase_30 | AC | 48 ms
7,188 KB |
testcase_31 | AC | 6 ms
6,816 KB |
testcase_32 | AC | 5 ms
6,820 KB |
testcase_33 | AC | 98 ms
8,724 KB |
testcase_34 | AC | 8 ms
6,816 KB |
testcase_35 | AC | 5 ms
6,816 KB |
testcase_36 | AC | 8 ms
6,816 KB |
testcase_37 | AC | 81 ms
8,060 KB |
testcase_38 | AC | 35 ms
8,004 KB |
testcase_39 | AC | 13 ms
6,820 KB |
testcase_40 | AC | 86 ms
9,936 KB |
testcase_41 | AC | 79 ms
10,708 KB |
testcase_42 | AC | 112 ms
10,328 KB |
testcase_43 | AC | 24 ms
6,992 KB |
testcase_44 | AC | 21 ms
7,024 KB |
testcase_45 | AC | 5 ms
6,816 KB |
testcase_46 | AC | 11 ms
6,820 KB |
testcase_47 | AC | 4 ms
6,820 KB |
testcase_48 | AC | 6 ms
6,820 KB |
testcase_49 | AC | 62 ms
8,160 KB |
testcase_50 | AC | 27 ms
6,828 KB |
testcase_51 | AC | 5 ms
6,816 KB |
testcase_52 | AC | 41 ms
7,900 KB |
testcase_53 | AC | 60 ms
8,224 KB |
testcase_54 | AC | 28 ms
7,056 KB |
testcase_55 | AC | 46 ms
8,028 KB |
testcase_56 | AC | 12 ms
6,816 KB |
testcase_57 | AC | 5 ms
6,816 KB |
testcase_58 | AC | 265 ms
15,504 KB |
testcase_59 | AC | 159 ms
11,332 KB |
testcase_60 | AC | 207 ms
11,896 KB |
testcase_61 | AC | 196 ms
11,824 KB |
testcase_62 | AC | 215 ms
11,352 KB |
testcase_63 | AC | 210 ms
11,296 KB |
testcase_64 | AC | 244 ms
11,904 KB |
testcase_65 | AC | 168 ms
11,440 KB |
testcase_66 | AC | 318 ms
14,172 KB |
testcase_67 | AC | 194 ms
11,844 KB |
testcase_68 | AC | 5 ms
6,816 KB |
testcase_69 | AC | 6 ms
6,820 KB |
testcase_70 | AC | 5 ms
6,820 KB |
ソースコード
#pragma GCC optimize("O2") #include <algorithm> #include <array> #include <bit> #include <bitset> #include <cassert> #include <cctype> #include <cfenv> #include <cfloat> #include <chrono> #include <cinttypes> #include <climits> #include <cmath> #include <compare> #include <complex> #include <concepts> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <initializer_list> #include <iomanip> #include <ios> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> #include <map> #include <memory> #include <new> #include <numbers> #include <numeric> #include <ostream> #include <queue> #include <random> #include <ranges> #include <set> #include <span> #include <sstream> #include <stack> #include <streambuf> #include <string> #include <tuple> #include <type_traits> #include <variant> //#define int ll #define INT128_MAX (__int128)(((unsigned __int128) 1 << ((sizeof(__int128) * __CHAR_BIT__) - 1)) - 1) #define INT128_MIN (-INT128_MAX - 1) #ifdef DEBUG #define dbg(x) cout << (#x) << " = " << x << '\n' #else #define dbg(x) #endif namespace R = std::ranges; namespace V = std::views; using namespace std; using ll = long long; using ull = unsigned long long; using ldb = long double; //#define double ldb template<class T, size_t N> ostream& operator<<(ostream& os, const array<T, N> &arr) { for(const T &X : arr) os << X << ' '; return os; } template<class T> ostream& operator<<(ostream& os, const vector<T> &vec) { for(const T &X : vec) os << X << ' '; return os; } template<class T> ostream& operator<<(ostream& os, const set<T> &s) { for(const T &x : s) os << x << ' '; return os; } /** * template name: MontgomeryModInt * author: Misuki * reference: https://github.com/NyaanNyaan/library/blob/master/modint/montgomery-modint.hpp#L10 * last update: 2023/11/30 * note: mod should be a prime less than 2^30. */ template<uint32_t mod> struct MontgomeryModInt { using mint = MontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 res = 1, base = mod; for(i32 i = 0; i < 31; i++) res *= base, base *= base; return -res; } static constexpr u32 get_mod() { return mod; } static constexpr u32 n2 = -u64(mod) % mod; //2^64 % mod static constexpr u32 r = get_r(); //-P^{-1} % 2^32 u32 a; static u32 reduce(const u64 &b) { return (b + u64(u32(b) * r) * mod) >> 32; } static u32 transform(const u64 &b) { return reduce(u64(b) * n2); } MontgomeryModInt() : a(0) {} MontgomeryModInt(const int64_t &b) : a(transform(b % mod + mod)) {} mint pow(u64 k) const { mint res(1), base(*this); while(k) { if (k & 1) res *= base; base *= base, k >>= 1; } return res; } mint inverse() const { return (*this).pow(mod - 2); } u32 get() const { u32 res = reduce(a); return res >= mod ? res - mod : res; } mint& operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint& operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } mint& operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } mint& operator/=(const mint &b) { a = reduce(u64(a) * b.inverse().a); return *this; } mint operator-() { return mint() - mint(*this); } bool operator==(mint b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(mint b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } friend mint operator+(mint a, mint b) { return a += b; } friend mint operator-(mint a, mint b) { return a -= b; } friend mint operator*(mint a, mint b) { return a *= b; } friend mint operator/(mint a, mint b) { return a /= b; } friend ostream& operator<<(ostream& os, const mint& b) { return os << b.get(); } friend istream& operator>>(istream& is, mint& b) { int64_t val; is >> val; b = mint(val); return is; } }; using mint = MontgomeryModInt<998244353>; /** * template name: comb * author: Misuki * last update: 2023/01/22 * note: remember to call init() before using it. */ const int MAX = 200002; mint fac[MAX], facInv[MAX], pow2[MAX]; void init() { fac[0] = 1; for(int i = 1; i < MAX; i++) fac[i] = fac[i - 1] * i; facInv[MAX - 1] = 1 / fac[MAX - 1]; for(int i = MAX - 2; i >= 0; i--) facInv[i] = facInv[i + 1] * (i + 1); pow2[0] = 1; for(int i = 1; i < MAX; i++) pow2[i] = pow2[i - 1] * 2; } mint binom(int a, int b) { if (b < 0 or a < b) return 0; else return fac[a] * facInv[b] * facInv[a - b]; } mint C(int k) { return fac[k] * facInv[k + 1] * binom(2 * k, k); } /** * template name: NTTmint * reference: https://judge.yosupo.jp/submission/69896 * last update: 2024/01/07 * include: mint * remark: MOD = 2^K * C + 1, R is a primitive root modulo MOD * remark: a.size() <= 2^K must be satisfied * some common modulo: 998244353 = 2^23 * 119 + 1, R = 3 * 469762049 = 2^26 * 7 + 1, R = 3 * 1224736769 = 2^24 * 73 + 1, R = 3 * verify: Library Checker - Convolution */ template<int32_t k = 23, int32_t c = 119, int32_t r = 3, class Mint = MontgomeryModInt<998244353>> struct NTT { using u32 = uint32_t; static constexpr u32 mod = (1 << k) * c + 1; static constexpr u32 get_mod() { return mod; } static void ntt(vector<Mint> &a, bool inverse) { static array<Mint, 30> w, w_inv; if (w[0] == 0) { Mint root = 2; while(root.pow((mod - 1) / 2) == 1) root += 1; for(int i = 0; i < 30; i++) w[i] = -(root.pow((mod - 1) >> (i + 2))), w_inv[i] = 1 / w[i]; } int n = ssize(a); if (not inverse) { for(int m = n; m >>= 1; ) { Mint ww = 1; for(int s = 0, l = 0; s < n; s += 2 * m) { for(int i = s, j = s + m; i < s + m; i++, j++) { Mint x = a[i], y = a[j] * ww; a[i] = x + y, a[j] = x - y; } ww *= w[__builtin_ctz(++l)]; } } } else { for(int m = 1; m < n; m *= 2) { Mint ww = 1; for(int s = 0, l = 0; s < n; s += 2 * m) { for(int i = s, j = s + m; i < s + m; i++, j++) { Mint x = a[i], y = a[j]; a[i] = x + y, a[j] = (x - y) * ww; } ww *= w_inv[__builtin_ctz(++l)]; } } Mint inv = 1 / Mint(n); for(Mint &x : a) x *= inv; } } static vector<Mint> conv(vector<Mint> a, vector<Mint> b) { int sz = ssize(a) + ssize(b) - 1; int n = bit_ceil((u32)sz); a.resize(n, 0); ntt(a, false); b.resize(n, 0); ntt(b, false); for(int i = 0; i < n; i++) a[i] *= b[i]; ntt(a, true); a.resize(sz); return a; } }; /** * template name: FPS * author: Misuki * last update: 2024/01/10 * include: NTT/mint * verify: Library Checker - Inv of Formal Power Series * Library Checker - Exp of Formal Power Series * Library Checker - Log of Formal Power Series * Library Checker - Pow of Formal Power Series * Library Checker - Convolution * Library Checker - Division of Polynomials * Library Checker - Multipoint Evaluation * Library Checker - Polynomial Interpolation */ template<class Mint> struct FPS : vector<Mint> { static function<vector<Mint>(vector<Mint>, vector<Mint>)> conv; FPS(vector<Mint> v) { *this = v; } using vector<Mint>::vector; FPS& operator+=(FPS b) { if (ssize(*this) < ssize(b)) this -> resize(ssize(b), 0); for(int i = 0; i < ssize(b); i++) (*this)[i] += b[i]; return *this; } FPS& operator-=(FPS b) { if (ssize(*this) < ssize(b)) this -> resize(ssize(b), 0); for(int i = 0; i < ssize(b); i++) (*this)[i] -= b[i]; return *this; } FPS& operator*=(FPS b) { auto c = conv(*this, b); this -> resize(ssize(*this) + ssize(b) - 1); copy(c.begin(), c.end(), this -> begin()); return *this; } FPS& operator*=(Mint b) { for(int i = 0; i < ssize(*this); i++) (*this)[i] *= b; return *this; } FPS& operator/=(Mint b) { b = Mint(1) / b; for(int i = 0; i < ssize(*this); i++) (*this)[i] *= b; return *this; } FPS shrink() { FPS F = *this; while(ssize(F) > 1 and F.back() == 0) F.pop_back(); return F; } FPS integral() { vector<Mint> Inv(ssize(*this) + 1); Inv[1] = 1; for(int i = 2; i < ssize(Inv); i++) Inv[i] = (Mint::get_mod() - Mint::get_mod() / i) * Inv[Mint::get_mod() % i]; FPS Q(ssize(*this) + 1, 0); for(int i = 0; i < ssize(*this); i++) Q[i + 1] = (*this)[i] * Inv[i + 1]; return Q; } FPS derivative() { assert(!this -> empty()); FPS Q(ssize(*this) - 1); for(int i = 1; i < ssize(*this); i++) Q[i - 1] = (*this)[i] * i; return Q; } Mint eval(Mint x) { Mint base = 1, res = 0; for(int i = 0; i < ssize(*this); i++, base *= x) res += (*this)[i] * base; return res; } FPS inv(int k) { // 1 / FPS (mod x^k) assert(!this -> empty() and (*this)[0] != 0); FPS Q(1, 1 / (*this)[0]); for(int i = 1; (1 << (i - 1)) < k; i++) { FPS P = (*this); P.resize(1 << i, 0); Q = Q * (FPS(1, 2) - P * Q); Q.resize(1 << i, 0); } Q.resize(k); return Q; } array<FPS, 2> div(FPS G) { FPS F = this -> shrink(); G = G.shrink(); assert(!G.empty()); if (ssize(G) > ssize(F)) return {{{}, F}}; int n = ssize(F) - ssize(G) + 1; auto FR = F, GR = G; R::reverse(FR); R::reverse(GR); FPS Q = FR * GR.inv(n); Q.resize(n); R::reverse(Q); return {Q, (F - G * Q).shrink()}; } FPS log(int k) { assert(!this -> empty() and (*this)[0] == 1); FPS Q = *this; Q = (Q.derivative() * Q.inv(k)); Q.resize(k - 1); return Q.integral(); } FPS exp(int k) { assert(!this -> empty() and (*this)[0] == 0); FPS Q(1, 1); for(int i = 1; (1 << (i - 1)) < k; i++) { FPS P = (*this); P.resize(1 << i, 0); Q = Q * (FPS(1, 1) + P - Q.log(1 << i)); Q.resize(1 << i, 0); } Q.resize(k); return Q; } FPS pow(ll idx, int k) { if (idx == 0) { FPS res(k, 0); res[0] = 1; return res; } for(int i = 0; i < ssize(*this) and i * idx < k; i++) { if ((*this)[i] != 0) { Mint Inv = 1 / (*this)[i]; FPS Q(ssize(*this) - i); for(int j = i; j < ssize(*this); j++) Q[j - i] = (*this)[j] * Inv; Q = (Q.log(k) * idx).exp(k); FPS Q2(k, 0); Mint Pow = (*this)[i].pow(idx); for(int j = 0; j + i * idx < k; j++) Q2[j + i * idx] = Q[j] * Pow; return Q2; } } return FPS(k, 0); } vector<Mint> multieval(vector<Mint> xs) { int n = ssize(xs); vector<FPS> data(2 * n); for(int i = 0; i < n; i++) data[n + i] = {-xs[i], 1}; for(int i = n - 1; i > 0; i--) data[i] = data[i << 1] * data[i << 1 | 1]; data[1] = (this -> div(data[1]))[1]; for(int i = 1; i < n; i++) { data[i << 1] = data[i].div(data[i << 1])[1]; data[i << 1 | 1] = data[i].div(data[i << 1 | 1])[1]; } vector<Mint> res(n); for(int i = 0; i < n; i++) res[i] = data[n + i][0]; return res; } static vector<Mint> interpolate(vector<Mint> xs, vector<Mint> ys) { assert(ssize(xs) == ssize(ys)); int n = ssize(xs); vector<FPS> data(2 * n), res(2 * n); for(int i = 0; i < n; i++) data[n + i] = {-xs[i], 1}; for(int i = n - 1; i > 0; i--) data[i] = data[i << 1] * data[i << 1 | 1]; res[1] = data[1].derivative().div(data[1])[1]; for(int i = 1; i < n; i++) { res[i << 1] = res[i].div(data[i << 1])[1]; res[i << 1 | 1] = res[i].div(data[i << 1 | 1])[1]; } for(int i = 0; i < n; i++) res[n + i][0] = ys[i] / res[n + i][0]; for(int i = n - 1; i > 0; i--) res[i] = res[i << 1] * data[i << 1 | 1] + res[i << 1 | 1] * data[i << 1]; return res[1]; } friend FPS operator+(FPS a, FPS b) { return a += b; } friend FPS operator-(FPS a, FPS b) { return a -= b; } friend FPS operator*(FPS a, FPS b) { return a *= b; } friend FPS operator*(FPS a, Mint b) { return a *= b; } friend FPS operator/(FPS a, Mint b) { return a /= b; } }; NTT ntt; using fps = FPS<mint>; template<> function<vector<mint>(vector<mint>, vector<mint>)> fps::conv = ntt.conv; signed main() { ios::sync_with_stdio(false), cin.tie(NULL); init(); int n, m; cin >> n >> m; vector<fps> poly; poly.push_back(fps(1, 1)); while(m--) { int l, r; cin >> l >> r; if ((r - l + 1) % 2 == 0) { poly.push_back(fps(r - l + 2, 0)); poly.back()[0] = 1, poly.back().back() = -C((r - l + 1) / 2); } } if (n & 1) { cout << 0 << '\n'; return 0; } auto calc = [&](int l, int r, auto self) -> fps { if (l + 1 == r) return poly[l]; else return self(l, (l + r) / 2, self) * self((l + r) / 2, r, self); }; auto f = calc(0, ssize(poly), calc); mint ans = 0; for(int i = 0; i < ssize(f); i += 2) ans += f[i] * C((n - i) / 2); cout << ans << '\n'; return 0; }