結果
問題 | No.2602 Real Collider |
ユーザー | lumid |
提出日時 | 2024-01-12 22:54:27 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,324 bytes |
コンパイル時間 | 997 ms |
コンパイル使用メモリ | 93,444 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-27 23:42:09 |
合計ジャッジ時間 | 15,168 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | AC | 180 ms
6,940 KB |
testcase_13 | AC | 89 ms
6,940 KB |
testcase_14 | WA | - |
testcase_15 | AC | 104 ms
6,944 KB |
testcase_16 | AC | 165 ms
6,944 KB |
testcase_17 | WA | - |
testcase_18 | AC | 138 ms
6,944 KB |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | AC | 122 ms
6,940 KB |
testcase_22 | AC | 149 ms
6,940 KB |
testcase_23 | AC | 101 ms
6,940 KB |
testcase_24 | AC | 138 ms
6,944 KB |
testcase_25 | AC | 152 ms
6,940 KB |
testcase_26 | WA | - |
testcase_27 | AC | 188 ms
6,940 KB |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | AC | 190 ms
6,940 KB |
testcase_39 | WA | - |
testcase_40 | AC | 85 ms
6,940 KB |
testcase_41 | WA | - |
testcase_42 | AC | 176 ms
6,940 KB |
testcase_43 | WA | - |
testcase_44 | AC | 225 ms
6,940 KB |
testcase_45 | AC | 130 ms
6,944 KB |
testcase_46 | WA | - |
testcase_47 | WA | - |
testcase_48 | WA | - |
testcase_49 | WA | - |
testcase_50 | WA | - |
testcase_51 | WA | - |
testcase_52 | AC | 71 ms
6,940 KB |
testcase_53 | WA | - |
testcase_54 | WA | - |
testcase_55 | AC | 155 ms
6,944 KB |
testcase_56 | AC | 154 ms
6,940 KB |
testcase_57 | AC | 142 ms
6,940 KB |
testcase_58 | WA | - |
testcase_59 | WA | - |
testcase_60 | WA | - |
testcase_61 | WA | - |
testcase_62 | WA | - |
testcase_63 | WA | - |
testcase_64 | AC | 232 ms
6,940 KB |
testcase_65 | WA | - |
testcase_66 | WA | - |
testcase_67 | AC | 91 ms
6,940 KB |
testcase_68 | WA | - |
testcase_69 | WA | - |
testcase_70 | WA | - |
testcase_71 | WA | - |
testcase_72 | WA | - |
testcase_73 | WA | - |
testcase_74 | WA | - |
testcase_75 | WA | - |
testcase_76 | WA | - |
testcase_77 | WA | - |
testcase_78 | WA | - |
testcase_79 | WA | - |
testcase_80 | WA | - |
コンパイルメッセージ
main.cpp: In function 'int main()': main.cpp:169:26: warning: narrowing conversion of 'x1' from 'int' to 'double' [-Wnarrowing] 169 | Circle mec = welzl({{x1,y1},{x2,y2},{x3,y3}}); | ^~ main.cpp:169:29: warning: narrowing conversion of 'y1' from 'int' to 'double' [-Wnarrowing] 169 | Circle mec = welzl({{x1,y1},{x2,y2},{x3,y3}}); | ^~ main.cpp:169:34: warning: narrowing conversion of 'x2' from 'int' to 'double' [-Wnarrowing] 169 | Circle mec = welzl({{x1,y1},{x2,y2},{x3,y3}}); | ^~ main.cpp:169:37: warning: narrowing conversion of 'y2' from 'int' to 'double' [-Wnarrowing] 169 | Circle mec = welzl({{x1,y1},{x2,y2},{x3,y3}}); | ^~ main.cpp:169:42: warning: narrowing conversion of 'x3' from 'int' to 'double' [-Wnarrowing] 169 | Circle mec = welzl({{x1,y1},{x2,y2},{x3,y3}}); | ^~ main.cpp:169:45: warning: narrowing conversion of 'y3' from 'int' to 'double' [-Wnarrowing] 169 | Circle mec = welzl({{x1,y1},{x2,y2},{x3,y3}}); | ^~
ソースコード
#include <algorithm> #include <assert.h> #include <iostream> #include <math.h> #include <vector> using namespace std; // Defining infinity const double INF = 1e18; // Structure to represent a 2D point struct Point { double X, Y; }; // Structure to represent a 2D circle struct Circle { Point C; double R; }; // Function to return the euclidean distance // between two points double dist(const Point& a, const Point& b) { return sqrt(pow(a.X - b.X, 2) + pow(a.Y - b.Y, 2)); } // Function to check whether a point lies inside // or on the boundaries of the circle bool is_inside(const Circle& c, const Point& p) { return dist(c.C, p) <= c.R; } // The following two functions are used // To find the equation of the circle when // three points are given. // Helper method to get a circle defined by 3 points Point get_circle_center(double bx, double by, double cx, double cy) { double B = bx * bx + by * by; double C = cx * cx + cy * cy; double D = bx * cy - by * cx; return { (cy * B - by * C) / (2 * D), (bx * C - cx * B) / (2 * D) }; } // Function to return a unique circle that // intersects three points Circle circle_from(const Point& A, const Point& B, const Point& C) { Point I = get_circle_center(B.X - A.X, B.Y - A.Y, C.X - A.X, C.Y - A.Y); I.X += A.X; I.Y += A.Y; return { I, dist(I, A) }; } // Function to return the smallest circle // that intersects 2 points Circle circle_from(const Point& A, const Point& B) { // Set the center to be the midpoint of A and B Point C = { (A.X + B.X) / 2.0, (A.Y + B.Y) / 2.0 }; // Set the radius to be half the distance AB return { C, dist(A, B) / 2.0 }; } // Function to check whether a circle // encloses the given points bool is_valid_circle(const Circle& c, const vector<Point>& P) { // Iterating through all the points // to check whether the points // lie inside the circle or not for (const Point& p : P) if (!is_inside(c, p)) return false; return true; } // Function to return the minimum enclosing // circle for N <= 3 Circle min_circle_trivial(vector<Point>& P) { assert(P.size() <= 3); if (P.empty()) { return { { 0, 0 }, 0 }; } else if (P.size() == 1) { return { P[0], 0 }; } else if (P.size() == 2) { return circle_from(P[0], P[1]); } // To check if MEC can be determined // by 2 points only for (int i = 0; i < 3; i++) { for (int j = i + 1; j < 3; j++) { Circle c = circle_from(P[i], P[j]); if (is_valid_circle(c, P)) return c; } } return circle_from(P[0], P[1], P[2]); } // Returns the MEC using Welzl's algorithm // Takes a set of input points P and a set R // points on the circle boundary. // n represents the number of points in P // that are not yet processed. Circle welzl_helper(vector<Point>& P, vector<Point> R, int n) { // Base case when all points processed or |R| = 3 if (n == 0 || R.size() == 3) { return min_circle_trivial(R); } // Pick a random point randomly int idx = rand() % n; Point p = P[idx]; // Put the picked point at the end of P // since it's more efficient than // deleting from the middle of the vector swap(P[idx], P[n - 1]); // Get the MEC circle d from the // set of points P - {p} Circle d = welzl_helper(P, R, n - 1); // If d contains p, return d if (is_inside(d, p)) { return d; } // Otherwise, must be on the boundary of the MEC R.push_back(p); // Return the MEC for P - {p} and R U {p} return welzl_helper(P, R, n - 1); } Circle welzl(const vector<Point>& P) { vector<Point> P_copy = P; random_shuffle(P_copy.begin(), P_copy.end()); return welzl_helper(P_copy, {}, P_copy.size()); } // Driver code int main() { int q;cin>>q; int x1,y1,x2,y2,x3,y3;cin>>x1>>y1>>x2>>y2>>x3>>y3; Circle mec = welzl({{x1,y1},{x2,y2},{x3,y3}}); while(q--){ long double x,y;cin>>x>>y; cout<<(sqrt((x-mec.C.X)*(x-mec.C.X)+(y-mec.C.Y)*(y-mec.C.Y))<=mec.R?"Yes":"No")<<'\n'; } }