結果
| 問題 |
No.2602 Real Collider
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2024-01-12 23:17:06 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 16,406 bytes |
| コンパイル時間 | 4,962 ms |
| コンパイル使用メモリ | 303,496 KB |
| 実行使用メモリ | 10,752 KB |
| 最終ジャッジ日時 | 2024-09-28 00:01:08 |
| 合計ジャッジ時間 | 9,610 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 7 TLE * 1 -- * 70 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
namespace emthrm {
template <int LOG_B = 9, int B = 1000000000> // B = 10^{LOG_B}
struct BigInt {
int sgn;
std::vector<int> data;
BigInt(const long long val = 0) { *this = val; }
BigInt(const std::string& s) { *this = s; }
std::vector<long long> convert_base(const int next_log_b,
const int next_b) const {
assert(next_b == std::llround(std::pow(10, next_log_b)));
const int max_base = std::max(LOG_B, next_log_b);
std::vector<long long> p(max_base + 1, 1);
for (int i = 1; i <= max_base; ++i) {
p[i] = p[i - 1] * 10;
}
std::vector<long long> res;
long long cur_val = 0;
int cur_log_b = 0;
for (const int e : data) {
cur_val += p[cur_log_b] * e;
cur_log_b += LOG_B;
for (; cur_log_b >= next_log_b; cur_log_b -= next_log_b) {
res.emplace_back(cur_val % next_b);
cur_val /= next_b;
}
}
res.emplace_back(cur_val);
while (!res.empty() && res.back() == 0) res.pop_back();
return res;
}
int digit_sum() const {
assert(sgn == 1);
int res = 0;
for (char c : to_string()) res += c - '0';
return res;
}
int length() const {
if (data.empty()) return 0;
int res = LOG_B * (data.size() - 1);
for (int tmp = data.back(); tmp > 0; tmp /= 10) {
++res;
}
return res;
}
BigInt pow(BigInt exponent) const {
BigInt res = 1, tmp = *this;
for (; exponent > 0; exponent /= 2) {
if (exponent.data.front() & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
long long to_llong() const {
assert(*this >= std::numeric_limits<long long>::min() &&
*this <= std::numeric_limits<long long>::max());
long long res = 0;
for (int i = std::ssize(data) - 1; i >= 0; --i) {
res = res * B + data[i];
}
return res;
}
std::string to_string() const {
std::stringstream ss;
ss << *this;
std::string res;
ss >> res;
return res;
}
void trim() {
while (!data.empty() && data.back() == 0) data.pop_back();
if (data.empty()) sgn = 1;
}
BigInt& operator=(long long val) {
if (val < 0) {
sgn = -1;
val = -val;
} else {
sgn = 1;
}
data.clear();
for (; val > 0; val /= B) {
data.emplace_back(val % B);
}
return *this;
}
BigInt& operator=(const std::string& s) {
sgn = 1;
data.clear();
if (!s.empty()) {
int tail = 0;
if (s.front() == '-') {
sgn = -1;
tail = 1;
} else if (s.front() == '+') {
tail = 1;
}
for (int i = s.length() - 1; i >= tail; i -= LOG_B) {
int val = 0;
for (int j = std::max(tail, i - LOG_B + 1); j <= i; ++j) {
val = val * 10 + (s[j] - '0');
}
data.emplace_back(val);
}
}
trim();
return *this;
}
BigInt& operator=(const BigInt& x) = default;
BigInt& operator+=(const BigInt& x) {
if (sgn != x.sgn) return x.data.empty() ? *this : *this -= -x;
if (data.size() < x.data.size()) data.resize(x.data.size(), 0);
bool carry = false;
for (int i = 0; std::cmp_less(i, x.data.size()) || carry; ++i) {
if (std::cmp_equal(i, data.size())) data.emplace_back(0);
data[i] += (std::cmp_less(i, x.data.size()) ? x.data[i] : 0) + carry;
if (data[i] >= B) {
carry = true;
data[i] -= B;
} else {
carry = false;
}
}
return *this;
}
BigInt& operator-=(const BigInt& x) {
if (sgn != x.sgn) return *this += -x;
if ((sgn == 1 ? *this : -*this) < (x.sgn == 1 ? x : -x)) {
return *this = -(x - *this);
}
bool carry = false;
for (int i = 0; std::cmp_less(i, data.size()) || carry; ++i) {
data[i] -= (std::cmp_less(i, x.data.size()) ? x.data[i] : 0) + carry;
if (data[i] < 0) {
carry = true;
data[i] += B;
} else {
carry = false;
}
}
trim();
return *this;
}
BigInt& operator*=(const BigInt& x) {
constexpr int next_log_b = 6, next_b = 1000000;
std::vector<long long> this6 = convert_base(next_log_b, next_b);
std::vector<long long> x6 = x.convert_base(next_log_b, next_b);
std::vector<long long> res = karatsuba(&this6, 0, this6.size(),
&x6, 0, x6.size());
for (int i = 0; std::cmp_less(i, res.size()); ++i) {
const long long quo = res[i] / next_b;
if (quo > 0) {
if (std::cmp_equal(i + 1, res.size())) {
res.emplace_back(quo);
} else {
res[i + 1] += quo;
}
res[i] %= next_b;
}
}
std::string s = (sgn * x.sgn == 1 ? "+" : "-");
for (int i = std::ssize(res) - 1; i >= 0; --i) {
const std::string tmp = std::to_string(res[i]);
s += std::string(next_log_b - tmp.length(), '0') + tmp;
}
return *this = s;
}
BigInt& operator/=(const int x) { return *this = divide(x).first; }
BigInt& operator/=(const BigInt& x) { return *this = divide(x).first; }
BigInt& operator%=(const int x) { return *this = divide(x).second; }
BigInt& operator%=(const BigInt& x) { return *this = divide(x).second; }
std::strong_ordering operator<=>(const BigInt& x) const {
if (sgn != x.sgn) return sgn <=> x.sgn;
if (data.size() != x.data.size()) {
return sgn * data.size() <=> x.sgn * x.data.size();
}
for (int i = std::ssize(data) - 1; i >= 0; --i) {
if (data[i] != x.data[i]) return data[i] * sgn <=> x.data[i] * x.sgn;
}
return std::strong_ordering::equivalent;
}
bool operator==(const BigInt& x) const {
if (sgn != x.sgn || data.size() != x.data.size()) return false;
const int n = data.size();
for (int i = 0; i < n; ++i) {
if (data[i] != x.data[i]) return false;
}
return true;
}
BigInt& operator++() { return *this += 1; }
BigInt operator++(int) {
const BigInt res = *this;
++*this;
return res;
}
BigInt& operator--() { return *this -= 1; }
BigInt operator--(int) {
const BigInt res = *this;
--*this;
return res;
}
BigInt operator+() const { return *this; }
BigInt operator-() const {
BigInt res = *this;
if (!res.data.empty()) res.sgn = -res.sgn;
return res;
}
BigInt operator+(const BigInt& x) const { return BigInt(*this) += x; }
BigInt operator-(const BigInt& x) const { return BigInt(*this) -= x; }
BigInt operator*(const BigInt& x) const { return BigInt(*this) *= x; }
BigInt operator/(const int x) const { return BigInt(*this) /= x; }
BigInt operator/(const BigInt& x) const { return BigInt(*this) /= x; }
BigInt operator%(const int x) const { return BigInt(*this) %= x; }
BigInt operator%(const BigInt& x) const { return BigInt(*this) %= x; }
friend std::ostream& operator<<(std::ostream& os, const BigInt& x) {
if (x.sgn == -1) os << '-';
os << (x.data.empty() ? 0 : x.data.back());
for (int i = std::ssize(x.data) - 2; i >= 0; --i) {
os << std::setw(LOG_B) << std::setfill('0') << x.data[i];
}
return os;
}
friend std::istream& operator>>(std::istream& is, BigInt& x) {
std::string s;
is >> s;
x = s;
return is;
}
private:
std::vector<long long> karatsuba(
std::vector<long long>* a, const int a_l, const int a_r,
std::vector<long long>* b, const int b_l, const int b_r) const {
const int a_len = a_r - a_l, b_len = b_r - b_l;
if (a_len < b_len) return karatsuba(b, b_l, b_r, a, a_l, a_r);
std::vector<long long> res(a_len + b_len, 0);
if (b_len <= 32) {
for (int i = a_l; i < a_r; ++i) {
for (int j = b_l; j < b_r; ++j) {
res[(i - a_l) + (j - b_l)] += (*a)[i] * (*b)[j];
}
}
} else {
const int mid = (a_len + 1) / 2, n = std::min(b_len, mid);
for (int i = a_l; i + mid < a_r; ++i) {
(*a)[i] += (*a)[i + mid];
}
for (int i = b_l; i + mid < b_r; ++i) {
(*b)[i] += (*b)[i + mid];
}
std::ranges::copy(karatsuba(a, a_l, a_l + mid, b, b_l, b_l + n),
std::next(res.begin(), mid));
for (int i = a_l; i + mid < a_r; ++i) {
(*a)[i] -= (*a)[i + mid];
}
for (int i = b_l; i + mid < b_r; ++i) {
(*b)[i] -= (*b)[i + mid];
}
std::vector<long long> tmp =
karatsuba(a, a_l, a_l + mid, b, b_l, b_l + n);
for (int i = 0; std::cmp_less(i, tmp.size()); ++i) {
res[i] += tmp[i];
res[mid + i] -= tmp[i];
}
tmp = karatsuba(a, a_l + mid, a_r, b, b_l + n, b_r);
for (int i = 0; std::cmp_less(i, tmp.size()); ++i) {
res[mid + i] -= tmp[i];
res[(mid << 1) + i] += tmp[i];
}
}
while (!res.empty() && res.back() == 0) res.pop_back();
return res;
}
std::pair<BigInt, int> divide(int x) const {
assert(x != 0);
BigInt dividend = *this;
if (x < 0) {
dividend.sgn = -dividend.sgn;
x = -x;
}
long long rem = 0;
for (int i = std::ssize(dividend.data) - 1; i >= 0; --i) {
const long long tmp = rem * B + dividend.data[i];
dividend.data[i] = tmp / x;
rem = tmp % x;
}
dividend.trim();
return {dividend, static_cast<int>(rem)};
}
std::pair<BigInt, BigInt> divide(const BigInt& x) const {
assert(!x.data.empty());
const int k = B / (x.data.back() + 1);
const BigInt dividend = (sgn == 1 ? *this : -*this) * k;
const BigInt divisor = (x.sgn == 1 ? x : -x) * k;
BigInt quo, rem = 0;
quo.data.resize(dividend.data.size());
const int n = divisor.data.size();
for (int i = std::ssize(dividend.data) - 1; i >= 0; --i) {
rem.data.emplace(rem.data.begin(), dividend.data[i]);
quo.data[i] =
((std::cmp_less(n, rem.data.size()) ?
static_cast<long long>(rem.data[n]) * B : 0)
+ (std::cmp_less(n - 1, rem.data.size()) ? rem.data[n - 1] : 0))
/ divisor.data.back();
rem -= divisor * quo.data[i];
while (rem.sgn == -1) {
rem += divisor;
--quo.data[i];
}
}
quo.sgn = sgn * x.sgn;
quo.trim();
rem.sgn = sgn;
rem.trim();
return {quo, rem / k};
}
};
} // namespace emthrm
namespace std {
template <int LOG_B, int B>
emthrm::BigInt<LOG_B, B> gcd(emthrm::BigInt<LOG_B, B> a,
emthrm::BigInt<LOG_B, B> b) {
while (!b.data.empty()) std::swap(a %= b, b);
return a;
}
template <int LOG_B, int B>
emthrm::BigInt<LOG_B, B> lcm(const emthrm::BigInt<LOG_B, B>& a,
const emthrm::BigInt<LOG_B, B>& b) {
return a / std::__gcd(a, b) * b;
}
template <int LOG_B, int B>
emthrm::BigInt<LOG_B, B> abs(const emthrm::BigInt<LOG_B, B>& x) {
return x.sgn == 1 ? x : -x;
}
template <int LOG_B, int B>
emthrm::BigInt<LOG_B, B> max(const emthrm::BigInt<LOG_B, B>& a,
const emthrm::BigInt<LOG_B, B>& b) {
return a < b ? b : a;
}
template <int LOG_B, int B>
emthrm::BigInt<LOG_B, B> min(const emthrm::BigInt<LOG_B, B>& a,
const emthrm::BigInt<LOG_B, B>& b) {
return a < b ? a : b;
}
} // namespace std
template <typename T = long long>
struct Rational {
T num, den;
Rational() : num(0), den(1) {}
Rational(const T num, const T den = 1) : num(num), den(den) {
// assert(den != 0);
reduce();
}
template <typename Real = long double>
Real to_real() const { return static_cast<Real>(num) / den; }
Rational& operator+=(const Rational& x) {
const T g = std::gcd(den, x.den);
num = num * (x.den / g) + x.num * (den / g);
den *= x.den / g;
reduce();
return *this;
}
Rational& operator-=(const Rational& x) { return *this += -x; }
Rational& operator*=(const Rational& x) {
const T g1 = std::gcd(num, x.den), g2 = std::gcd(den, x.num);
num = (num / g1) * (x.num / g2);
den = (den / g2) * (x.den / g1);
reduce();
return *this;
}
Rational& operator/=(const Rational& x) {
return *this *= Rational(x.den, x.num);
}
auto operator<=>(const Rational& x) const {
return num * x.den <=> x.num * den;
}
bool operator==(const Rational& x) const {
return num == x.num && den == x.den;
}
Rational& operator++() {
if ((num += den) == 0) den = 1;
return *this;
}
Rational operator++(int) {
const Rational res = *this;
++*this;
return res;
}
Rational& operator--() {
if ((num -= den) == 0) den = 1;
return *this;
}
Rational operator--(int) {
const Rational res = *this;
--*this;
return res;
}
Rational operator+() const { return *this; }
Rational operator-() const { return Rational(-num, den); }
Rational operator+(const Rational& x) const { return Rational(*this) += x; }
Rational operator-(const Rational& x) const { return Rational(*this) -= x; }
Rational operator*(const Rational& x) const { return Rational(*this) *= x; }
Rational operator/(const Rational& x) const { return Rational(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const Rational& x) {
if (x.den == 1) return os << x.num;
return os << x.num << '/' << x.den;
}
private:
void reduce() {
const T g = std::gcd(num, den);
num /= g;
den /= g;
if (den < 0) {
num = -num;
den = -den;
}
}
};
using bigint = emthrm::BigInt<>;
using rational = Rational<bigint>;
using Point = pair<int, int>;
tuple<rational, rational, rational> smallest_enclosing_circle(
const Point& p1, const Point& p2, const Point& p3) {
const auto get_circle = [](const Point& p1, const Point& p2) -> tuple<rational, rational, rational> {
const auto [p1x, p1y] = p1;
const auto [p2x, p2y] = p2;
return {rational(p1x + p2x, 2), rational(p1y + p2y, 2),
rational((p2x - p1x) * (p2x - p1x) + (p2y - p1y) * (p2y - p1y), 4)};
};
auto [cx, cy, cr] = get_circle(p1, p2);
const auto is_in = [&](const Point& p) -> bool {
const auto [x, y] = p;
return (cx - bigint{x}) * (cx - bigint{x}) + (cy - bigint{y}) * (cy - bigint{y}) <= cr;
};
if (!is_in(p3)) {
tie(cx, cy, cr) = get_circle(p1, p3);
if (!is_in(p2)) {
tie(cx, cy, cr) = get_circle(p2, p3);
if (!is_in(p1)) {
const int a = (p3.first - p2.first) * (p3.first - p2.first) + (p3.second - p2.second) * (p3.second - p2.second);
const int b = (p1.first - p3.first) * (p1.first - p3.first) + (p1.second - p3.second) * (p1.second - p3.second);
const int c = (p2.first - p1.first) * (p2.first - p1.first) + (p2.second - p1.second) * (p2.second - p1.second);
const int idx = p3.first - p1.first, idy = p3.second - p1.second;
const int jdx = p2.first - p1.first, jdy = p2.second - p1.second;
const int s = idx * jdy - idy * jdx;
cx = rational(bigint{p1.first} * a * (b + c - a) + bigint{p2.first} * b * (c + a - b) + bigint{p3.first} * c * (a + b - c), 4LL * s * s);
cy = rational(bigint{p1.second} * a * (b + c - a) + bigint{p2.second} * b * (c + a - b) + bigint{p3.second} * c * (a + b - c), 4LL * s * s);
cr = (cx - bigint{p1.first}) * (cx - bigint{p1.first}) + (cy - bigint{p1.second}) * (cy - bigint{p1.second});
}
}
}
return {cx, cy, cr};
}
int main() {
int q, xa, ya, xb, yb, xc, yc; cin >> q >> xa >> ya >> xb >> yb >> xc >> yc;
const auto [cx, cy, cr] = smallest_enclosing_circle({xa, ya}, {xb, yb}, {xc, yc});
while (q--) {
int x, y; cin >> x >> y;
cout << ((cx - bigint{x}) * (cx - bigint{x}) + (cy - bigint{y}) * (cy - bigint{y}) <= cr ? "Yes\n" : "No\n");
}
return 0;
}
emthrm