結果
問題 | No.2605 Pickup Parentheses |
ユーザー | Shirotsume |
提出日時 | 2024-01-12 23:20:07 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 13,160 bytes |
コンパイル時間 | 312 ms |
コンパイル使用メモリ | 82,060 KB |
実行使用メモリ | 149,568 KB |
最終ジャッジ日時 | 2024-09-28 00:03:54 |
合計ジャッジ時間 | 34,457 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 417 ms
124,340 KB |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | AC | 540 ms
142,748 KB |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | AC | 456 ms
139,928 KB |
testcase_32 | AC | 441 ms
137,508 KB |
testcase_33 | WA | - |
testcase_34 | AC | 498 ms
142,100 KB |
testcase_35 | AC | 477 ms
140,480 KB |
testcase_36 | AC | 506 ms
140,868 KB |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | WA | - |
testcase_44 | WA | - |
testcase_45 | AC | 406 ms
137,480 KB |
testcase_46 | WA | - |
testcase_47 | AC | 398 ms
132,792 KB |
testcase_48 | WA | - |
testcase_49 | WA | - |
testcase_50 | WA | - |
testcase_51 | AC | 476 ms
141,316 KB |
testcase_52 | WA | - |
testcase_53 | WA | - |
testcase_54 | WA | - |
testcase_55 | WA | - |
testcase_56 | WA | - |
testcase_57 | AC | 468 ms
140,992 KB |
testcase_58 | WA | - |
testcase_59 | WA | - |
testcase_60 | WA | - |
testcase_61 | WA | - |
testcase_62 | WA | - |
testcase_63 | WA | - |
testcase_64 | WA | - |
testcase_65 | WA | - |
testcase_66 | WA | - |
testcase_67 | WA | - |
testcase_68 | RE | - |
testcase_69 | RE | - |
testcase_70 | AC | 390 ms
129,976 KB |
ソースコード
import sys, time, random from collections import deque, Counter, defaultdict input = lambda: sys.stdin.readline().rstrip() ii = lambda: int(input()) mi = lambda: map(int, input().split()) li = lambda: list(mi()) inf = 2 ** 63 - 1 mod = 998244353 class Calculator: def __init__(self): self.primitive=self.__primitive_root() self.__build_up() def __primitive_root(self): p=Mod if p==2: return 1 if p==998244353: return 3 if p==10**9+7: return 5 if p==163577857: return 23 if p==167772161: return 3 if p==469762049: return 3 fac=[] q=2 v=p-1 while v>=q*q: e=0 while v%q==0: e+=1 v//=q if e>0: fac.append(q) q+=1 if v>1: fac.append(v) g=2 while g<p: if pow(g,p-1,p)!=1: return None flag=True for q in fac: if pow(g,(p-1)//q,p)==1: flag=False break if flag: return g g+=1 #参考元: https://judge.yosupo.jp/submission/72676 def __build_up(self): rank2=(~(Mod-1)&(Mod-2)).bit_length() root=[0]*(rank2+1); iroot=[0]*(rank2+1) rate2=[0]*max(0, rank2-1); irate2=[0]*max(0, rank2-1) rate3=[0]*max(0, rank2-2); irate3=[0]*max(0, rank2-2) root[-1]=pow(self.primitive, (Mod-1)>>rank2, Mod) iroot[-1]=pow(root[-1], Mod-2, Mod) for i in range(rank2)[::-1]: root[i]=root[i+1]*root[i+1]%Mod iroot[i]=iroot[i+1]*iroot[i+1]%Mod prod=iprod=1 for i in range(rank2-1): rate2[i]=root[i+2]*prod%Mod irate2[i]=iroot[i+2]*prod%Mod prod*=iroot[i+2]; prod%=Mod iprod*=root[i+2]; iprod%=Mod prod=iprod = 1 for i in range(rank2-2): rate3[i]=root[i + 3]*prod%Mod irate3[i]=iroot[i + 3]*iprod%Mod prod*=iroot[i + 3]; prod%=Mod iprod*=root[i + 3]; iprod%=Mod self.root=root; self.iroot=iroot self.rate2=rate2; self.irate2=irate2 self.rate3=rate3; self.irate3=irate3 def Add(self, A, B): """ 必要ならば末尾に元を追加して, [A[i]+B[i]] を求める. """ if type(A)==int: A=[A] if type(B)==int: B=[B] m=min(len(A), len(B)) C=[(A[i]+B[i])%Mod for i in range(m)] C.extend(A[m:]) C.extend(B[m:]) return C def Sub(self, A, B): """ 必要ならば末尾に元を追加して, [A[i]-B[i]] を求める. """ if type(A)==int: A=[A] if type(B)==int: B=[B] m=min(len(A), len(B)) C=[0]*m C=[(A[i]-B[i])%Mod for i in range(m)] C.extend(A[m:]) C.extend([-b%Mod for b in B[m:]]) return C def Times(self,A, k): """ [k*A[i]] を求める. """ return [k*a%Mod for a in A] #参考元 https://judge.yosupo.jp/submission/72676 def NTT(self, A): """ A に Mod を法とする数論変換を施す ※ Mod はグローバル変数から指定 References: https://github.com/atcoder/ac-library/blob/master/atcoder/convolution.hpp https://judge.yosupo.jp/submission/72676 """ N=len(A) H=(N-1).bit_length() l=0 I=self.root[2] rate2=self.rate2; rate3=self.rate3 while l<H: if H-l==1: p=1<<(H-l-1) rot=1 for s in range(1<<l): offset=s<<(H-l) for i in range(p): x=A[i+offset]; y=A[i+offset+p]*rot%Mod A[i+offset]=(x+y)%Mod A[i+offset+p]=(x-y)%Mod if s+1!=1<<l: rot*=rate2[(~s&-~s).bit_length()-1] rot%=Mod l+=1 else: p=1<<(H-l-2) rot=1 for s in range(1<<l): rot2=rot*rot%Mod rot3=rot2*rot%Mod offset=s<<(H-l) for i in range(p): a0=A[i+offset] a1=A[i+offset+p]*rot a2=A[i+offset+2*p]*rot2 a3=A[i+offset+3*p]*rot3 alpha=(a1-a3)%Mod*I A[i+offset]=(a0+a2+a1+a3)%Mod A[i+offset+p]=(a0+a2-a1-a3)%Mod A[i+offset+2*p]=(a0-a2+alpha)%Mod A[i+offset+3*p]=(a0-a2-alpha)%Mod if s+1!=1<<l: rot*=rate3[(~s&-~s).bit_length()-1] rot%=Mod l+=2 #参考元 https://judge.yosupo.jp/submission/72676 def Inverse_NTT(self, A): """ A を Mod を法とする逆数論変換を施す ※ Mod はグローバル変数から指定 References: https://github.com/atcoder/ac-library/blob/master/atcoder/convolution.hpp https://judge.yosupo.jp/submission/72676 """ N=len(A) H=(N-1).bit_length() l=H J=self.iroot[2] irate2=self.rate2; irate3=self.irate3 while l: if l==1: p=1<<(H-l) irot=1 for s in range(1<<(l-1)): offset=s<<(H-l+1) for i in range(p): x=A[i+offset]; y=A[i+offset+p] A[i+offset]=(x+y)%Mod A[i+offset+p]=(x-y)*irot%Mod if s+1!=1<<(l-1): irot*=irate2[(~s&-~s).bit_length()-1] irot%=Mod l-=1 else: p=1<<(H-l) irot=1 for s in range(1<<(l-2)): irot2=irot*irot%Mod irot3=irot2*irot%Mod offset=s<<(H-l+2) for i in range(p): a0=A[i+offset] a1=A[i+offset+p] a2=A[i+offset+2*p] a3=A[i+offset+3*p] beta=(a2-a3)*J%Mod A[i+offset]=(a0+a1+a2+a3)%Mod A[i+offset+p]=(a0-a1+beta)*irot%Mod A[i+offset+2*p]=(a0+a1-a2-a3)*irot2%Mod A[i+offset+3*p]=(a0-a1-beta)*irot3%Mod if s+1!=1<<(l-2): irot*=irate3[(~s&-~s).bit_length()-1] irot%=Mod l-=2 N_inv=pow(N,Mod-2,Mod) for i in range(N): A[i]=N_inv*A[i]%Mod def non_zero_count(self, A): """ A にある非零の数を求める. """ return len(A)-A.count(0) def is_sparse(self, A, K=None): """ A が疎かどうかを判定する. """ if K==None: K=25 return self.non_zero_count(A)<=K def coefficients_list(self, A): """ A にある非零のリストを求める. output: ( [d[0], ..., d[k-1] ], [f[0], ..., f[k-1] ]) : a[d[j]]=f[j] であることを表している. """ f=[]; d=[] for i in range(len(A)): if A[i]: d.append(i) f.append(A[i]) return d,f def Convolution(self, A, B): """ A, B で Mod を法とする畳み込みを求める. ※ Mod はグローバル変数から指定 """ if not A or not B: return [] N=len(A) M=len(B) L=M+N-1 if min(N,M)<=50: if N<M: N,M=M,N A,B=B,A C=[0]*L for i in range(N): for j in range(M): C[i+j]+=A[i]*B[j] C[i+j]%=Mod return C H=L.bit_length() K=1<<H A=A+[0]*(K-N) B=B+[0]*(K-M) self.NTT(A) self.NTT(B) for i in range(K): A[i]=A[i]*B[i]%Mod self.Inverse_NTT(A) return A[:L] def Autocorrelation(self, A): """ A 自身に対して,Mod を法とする畳み込みを求める. ※ Mod はグローバル変数から指定 """ N=len(A) L=2*N-1 if N<=50: C=[0]*L for i in range(N): for j in range(N): C[i+j]+=A[i]*A[j] C[i+j]%=Mod return C H=L.bit_length() K=1<<H A=A+[0]*(K-N) self.NTT(A) for i in range(K): A[i]=A[i]*A[i]%Mod self.Inverse_NTT(A) return A[:L] def Multiple_Convolution(self, *A): """ A=(A[0], A[1], ..., A[d-1]) で Mod を法とする畳み込みを行う. """ from collections import deque if not A: return [1] Q=deque(list(range(len(A)))) A=list(A) while len(Q)>=2: i=Q.popleft(); j=Q.popleft() A[i]=self.Convolution(A[i], A[j]) Q.append(i) i=Q.popleft() return A[i] def Inverse(self, F, length=None): if length==None: M=len(F) else: M=length if M<=0: return [] if self.is_sparse(F): """ 愚直に漸化式を用いて求める. 計算量: F にある係数が非零の項の個数を K, 求める最大次数を N として, O(NK) 時間 """ d,f=self.coefficients_list(F) G=[0]*M alpha=pow(F[0], Mod-2, Mod) G[0]=alpha for i in range(1, M): for j in range(1, len(d)): if d[j]<=i: G[i]+=f[j]*G[i-d[j]]%Mod else: break G[i]%=Mod G[i]=(-alpha*G[i])%Mod del G[M:] else: """ FFTの理論を応用して求める. 計算量: 求めたい項の個数をNとして, O(N log N) Reference: https://judge.yosupo.jp/submission/42413 """ N=len(F) r=pow(F[0],Mod-2,Mod) m=1 G=[r] while m<M: A=F[:min(N, 2*m)]; A+=[0]*(2*m-len(A)) B=G.copy(); B+=[0]*(2*m-len(B)) Calc.NTT(A); Calc.NTT(B) for i in range(2*m): A[i]=A[i]*B[i]%Mod Calc.Inverse_NTT(A) A=A[m:]+[0]*m Calc.NTT(A) for i in range(2*m): A[i]=-A[i]*B[i]%Mod Calc.Inverse_NTT(A) G.extend(A[:m]) m<<=1 G=G[:M] return G def Floor_Div(self, F, G): assert F[-1] assert G[-1] F_deg=len(F)-1 G_deg=len(G)-1 if F_deg<G_deg: return [] m=F_deg-G_deg+1 return self.Convolution(F[::-1], Calc.Inverse(G[::-1],m))[m-1::-1] def Mod(self, F, G): while F and F[-1]==0: F.pop() while G and G[-1]==0: G.pop() if not F: return [] return Calc.Sub(F, Calc.Convolution(Calc.Floor_Div(F,G),G)) class Combinatorics(): def __init__(self, mod, maxi): self.mod = mod self.maxi = maxi self.facs = [1] * (maxi + 1) self.factinvs = [1] * (maxi + 1) self.invs = [1] * (maxi + 1) for i in range(2, self.maxi + 1): self.facs[i] = ((self.facs[i-1] * i) % self.mod) self.invs[i] = (-self.invs[self.mod % i] * (self.mod // i)) % self.mod self.factinvs[i] = (self.factinvs[i-1] * self.invs[i]) % self.mod def choose(self, n, k): if k < 0 or k > n: return 0 if k == 0 or k == n: return 1 k = min(k, n - k) return (((self.facs[n] * self.factinvs[k]) % self.mod) * self.factinvs[n-k]) % self.mod def perm(self, n, k): return (self.choose(n, k) * self.facs[k]) % self.mod def homop(self, n, k): if n == k == 0: return 1 return self.choose(n + k - 1, k) Mod = mod Calc = Calculator() n, m = mi() C = Combinatorics(mod, 25* 10 ** 5 + 2) a = [] for _ in range(m): l, r = mi() a.append(r - l + 1) A = [] cat = [0] * (2 * n + 3) for i in range(1, n + 1): cat[2 * i] = C.choose(2 * i, i) * pow(i + 1, -1, mod) % mod for v in a: now = [0] * (v + 1) now[0] = 1 now[v] = -cat[v] A.append(now) C = Calc.Multiple_Convolution(A)[0] C += [0] * (n + 1 - len(C)) ans = 0 for i in range(n + 1): ans += C[i] * cat[n - i] % mod print(ans % mod)