結果
問題 | No.2605 Pickup Parentheses |
ユーザー |
|
提出日時 | 2024-01-12 23:23:35 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 165 ms / 2,000 ms |
コード長 | 31,418 bytes |
コンパイル時間 | 2,995 ms |
コンパイル使用メモリ | 269,748 KB |
実行使用メモリ | 16,444 KB |
最終ジャッジ日時 | 2024-09-30 06:30:43 |
合計ジャッジ時間 | 6,835 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 68 |
ソースコード
#include <bits/stdc++.h>// #include <x86intrin.h>using namespace std;#if __cplusplus >= 202002Lusing namespace numbers;#endiftemplate<class data_t, data_t _mod>struct modular_fixed_base{#define IS_INTEGRAL(T) (is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>)#define IS_UNSIGNED(T) (is_unsigned_v<T> || is_same_v<T, __uint128_t>)static_assert(IS_UNSIGNED(data_t));static_assert(_mod >= 1);static constexpr bool VARIATE_MOD_FLAG = false;static constexpr data_t mod(){return _mod;}template<class T>static vector<modular_fixed_base> precalc_power(T base, int SZ){vector<modular_fixed_base> res(SZ + 1, 1);for(auto i = 1; i <= SZ; ++ i) res[i] = res[i - 1] * base;return res;}static vector<modular_fixed_base> _INV;static void precalc_inverse(int SZ){if(_INV.empty()) _INV.assign(2, 1);for(auto x = _INV.size(); x <= SZ; ++ x) _INV.push_back(_mod / x * -_INV[_mod % x]);}// _mod must be a primestatic modular_fixed_base _primitive_root;static modular_fixed_base primitive_root(){if(_primitive_root) return _primitive_root;if(_mod == 2) return _primitive_root = 1;if(_mod == 998244353) return _primitive_root = 3;data_t divs[20] = {};divs[0] = 2;int cnt = 1;data_t x = (_mod - 1) / 2;while(x % 2 == 0) x /= 2;for(auto i = 3; 1LL * i * i <= x; i += 2){if(x % i == 0){divs[cnt ++] = i;while(x % i == 0) x /= i;}}if(x > 1) divs[cnt ++] = x;for(auto g = 2; ; ++ g){bool ok = true;for(auto i = 0; i < cnt; ++ i){if((modular_fixed_base(g).power((_mod - 1) / divs[i])) == 1){ok = false;break;}}if(ok) return _primitive_root = g;}}constexpr modular_fixed_base(){ }modular_fixed_base(const double &x){ data = _normalize(llround(x)); }modular_fixed_base(const long double &x){ data = _normalize(llround(x)); }template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base(const T &x){ data = _normalize(x); }template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> static data_t _normalize(const T &x){int sign = x >= 0 ? 1 : -1;data_t v = _mod <= sign * x ? sign * x % _mod : sign * x;if(sign == -1 && v) v = _mod - v;return v;}template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> operator T() const{ return data; }modular_fixed_base &operator+=(const modular_fixed_base &otr){ if((data += otr.data) >= _mod) data -= _mod; return *this; }modular_fixed_base &operator-=(const modular_fixed_base &otr){ if((data += _mod - otr.data) >= _mod) data -= _mod; return *this; }template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &operator+=(const T &otr){ return *this +=modular_fixed_base(otr); }template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &operator-=(const T &otr){ return *this -=modular_fixed_base(otr); }modular_fixed_base &operator++(){ return *this += 1; }modular_fixed_base &operator--(){ return *this += _mod - 1; }modular_fixed_base operator++(int){ modular_fixed_base result(*this); *this += 1; return result; }modular_fixed_base operator--(int){ modular_fixed_base result(*this); *this += _mod - 1; return result; }modular_fixed_base operator-() const{ return modular_fixed_base(_mod - data); }modular_fixed_base &operator*=(const modular_fixed_base &rhs){if constexpr(is_same_v<data_t, unsigned int>) data = (unsigned long long)data * rhs.data % _mod;else if constexpr(is_same_v<data_t, unsigned long long>){long long res = data * rhs.data - _mod * (unsigned long long)(1.L / _mod * data * rhs.data);data = res + _mod * (res < 0) - _mod * (res >= (long long)_mod);}else data = _normalize(data * rhs.data);return *this;}template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>modular_fixed_base &inplace_power(T e){if(e == 0) return *this = 1;if(data == 0) return *this = {};if(data == 1) return *this;if(data == mod() - 1) return e % 2 ? *this : *this = -*this;if(e < 0) *this = 1 / *this, e = -e;modular_fixed_base res = 1;for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this;return *this = res;}template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>modular_fixed_base power(T e) const{return modular_fixed_base(*this).inplace_power(e);}modular_fixed_base &operator/=(const modular_fixed_base &otr){make_signed_t<data_t> a = otr.data, m = _mod, u = 0, v = 1;if(a < _INV.size()) return *this *= _INV[a];while(a){make_signed_t<data_t> t = m / a;m -= t * a; swap(a, m);u -= t * v; swap(u, v);}assert(m == 1);return *this *= u;}#define ARITHMETIC_OP(op, apply_op)\modular_fixed_base operator op(const modular_fixed_base &x) const{ return modular_fixed_base(*this) apply_op x; }\template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\modular_fixed_base operator op(const T &x) const{ return modular_fixed_base(*this) apply_op modular_fixed_base(x); }\template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\friend modular_fixed_base operator op(const T &x, const modular_fixed_base &y){ return modular_fixed_base(x) apply_op y; }ARITHMETIC_OP(+, +=) ARITHMETIC_OP(-, -=) ARITHMETIC_OP(*, *=) ARITHMETIC_OP(/, /=)#undef ARITHMETIC_OP#define COMPARE_OP(op)\bool operator op(const modular_fixed_base &x) const{ return data op x.data; }\template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\bool operator op(const T &x) const{ return data op modular_fixed_base(x).data; }\template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\friend bool operator op(const T &x, const modular_fixed_base &y){ return modular_fixed_base(x).data op y.data; }COMPARE_OP(==) COMPARE_OP(!=) COMPARE_OP(<) COMPARE_OP(<=) COMPARE_OP(>) COMPARE_OP(>=)#undef COMPARE_OPfriend istream &operator>>(istream &in, modular_fixed_base &number){long long x;in >> x;number.data = modular_fixed_base::_normalize(x);return in;}//#define _SHOW_FRACTIONfriend ostream &operator<<(ostream &out, const modular_fixed_base &number){out << number.data;#if defined(LOCAL) && defined(_SHOW_FRACTION)cerr << "(";for(auto d = 1; ; ++ d){if((number * d).data <= 1000000){cerr << (number * d).data;if(d != 1) cerr << "/" << d;break;}else if((-number * d).data <= 1000000){cerr << "-" << (-number * d).data;if(d != 1) cerr << "/" << d;break;}}cerr << ")";#endifreturn out;}data_t data = 0;#undef _SHOW_FRACTION#undef IS_INTEGRAL#undef IS_SIGNED};template<class data_t, data_t _mod> vector<modular_fixed_base<data_t, _mod>> modular_fixed_base<data_t, _mod>::_INV;template<class data_t, data_t _mod> modular_fixed_base<data_t, _mod> modular_fixed_base<data_t, _mod>::_primitive_root;const unsigned int mod = (119 << 23) + 1; // 998244353// const unsigned int mod = 1e9 + 7; // 1000000007// const unsigned int mod = 1e9 + 9; // 1000000009// const unsigned long long mod = (unsigned long long)1e18 + 9;using modular = modular_fixed_base<decay_t<decltype(mod)>, mod>;// T must be of modular type// mod must be a prime// Requires modulartemplate<class T>struct number_theoric_transform_wrapper{// i \in [2^k, 2^{k+1}) holds w_{2^k+1}^{i-2^k}static vector<T> root, buffer1, buffer2;static void adjust_root(int n){if(root.empty()) root = {1, 1};for(auto k = (int)root.size(); k < n; k <<= 1){root.resize(n, 1);T w = T::primitive_root().power((T::mod() - 1) / (k << 1));for(auto i = k; i < k << 1; ++ i) root[i] = i & 1 ? root[i >> 1] * w : root[i >> 1];}}// n must be a power of two// p must have next n memories allocated// O(n * log(n))static void transform(int n, T *p, bool invert = false){assert(n && __builtin_popcount(n) == 1 && (T::mod() - 1) % n == 0);for(auto i = 1, j = 0; i < n; ++ i){int bit = n >> 1;for(; j & bit; bit >>= 1) j ^= bit;j ^= bit;if(i < j) swap(p[i], p[j]);}adjust_root(n);for(auto len = 1; len < n; len <<= 1) for(auto i = 0; i < n; i += len << 1) for(auto j = 0; j < len; ++ j){T x = p[i + j], y = p[len + i + j] * root[len + j];p[i + j] = x + y, p[len + i + j] = x - y;}if(invert){reverse(p + 1, p + n);T inv_n = T(1) / n;for(auto i = 0; i < n; ++ i) p[i] *= inv_n;}}static void transform(vector<T> &p, bool invert = false){transform((int)p.size(), p.data(), invert);}// Double the length of the ntt array// n must be a power of two// p must have next 2n memories allocated// O(n * log(n))static void double_up(int n, T *p){assert(n && __builtin_popcount(n) == 1 && (T().mod() - 1) % (n << 1) == 0);buffer1.resize(n << 1);for(auto i = 0; i < n; ++ i) buffer1[i << 1] = p[i];transform(n, p, true);adjust_root(n << 1);for(auto i = 0; i < n; ++ i) p[i] *= root[n | i];transform(n, p);for(auto i = 0; i < n; ++ i) buffer1[i << 1 | 1] = p[i];copy(buffer1.begin(), buffer1.begin() + 2 * n, p);}static void double_up(vector<T> &p){int n = (int)p.size();p.resize(n << 1);double_up(n, p.data());}// O(n * m)static vector<T> convolute_naive(const vector<T> &p, const vector<T> &q){vector<T> res(max((int)p.size() + (int)q.size() - 1, 0));for(auto i = 0; i < (int)p.size(); ++ i) for(auto j = 0; j < (int)q.size(); ++ j) res[i + j] += p[i] * q[j];return res;}// O((n + m) * log(n + m))static vector<T> convolute(const vector<T> &p, const vector<T> &q){if(min(p.size(), q.size()) < 55) return convolute_naive(p, q);int m = (int)p.size() + (int)q.size() - 1, n = 1 << __lg(m) + 1;buffer1.assign(n, 0);copy(p.begin(), p.end(), buffer1.begin());transform(buffer1);buffer2.assign(n, 0);copy(q.begin(), q.end(), buffer2.begin());transform(buffer2);for(auto i = 0; i < n; ++ i) buffer1[i] *= buffer2[i];transform(buffer1, true);return vector<T>(buffer1.begin(), buffer1.begin() + m);}// O((n + m) * log(n + m))static vector<T> arbitrarily_convolute(const vector<T> &p, const vector<T> &q){using modular0 = modular_fixed_base<unsigned int, 1045430273>;using modular1 = modular_fixed_base<unsigned int, 1051721729>;using modular2 = modular_fixed_base<unsigned int, 1053818881>;using ntt0 = number_theoric_transform_wrapper<modular0>;using ntt1 = number_theoric_transform_wrapper<modular1>;using ntt2 = number_theoric_transform_wrapper<modular2>;vector<modular0> p0((int)p.size()), q0((int)q.size());for(auto i = 0; i < (int)p.size(); ++ i) p0[i] = p[i].data;for(auto i = 0; i < (int)q.size(); ++ i) q0[i] = q[i].data;auto xy0 = ntt0::convolute(p0, q0);vector<modular1> p1((int)p.size()), q1((int)q.size());for(auto i = 0; i < (int)p.size(); ++ i) p1[i] = p[i].data;for(auto i = 0; i < (int)q.size(); ++ i) q1[i] = q[i].data;auto xy1 = ntt1::convolute(p1, q1);vector<modular2> p2((int)p.size()), q2((int)q.size());for(auto i = 0; i < (int)p.size(); ++ i) p2[i] = p[i].data;for(auto i = 0; i < (int)q.size(); ++ i) q2[i] = q[i].data;auto xy2 = ntt2::convolute(p2, q2);static const modular1 r01 = 1 / modular1(modular0::mod());static const modular2 r02 = 1 / modular2(modular0::mod());static const modular2 r12 = 1 / modular2(modular1::mod());static const modular2 r02r12 = r02 * r12;static const T w1 = modular0::mod();static const T w2 = w1 * modular1::mod();int n = (int)p.size() + (int)q.size() - 1;vector<T> res(n);for(auto i = 0; i < n; ++ i){using ull = unsigned long long;ull a = xy0[i].data;ull b = (xy1[i].data + modular1::mod() - a) * r01.data % modular1::mod();ull c = ((xy2[i].data + modular2::mod() - a) * r02r12.data + (modular2::mod() - b) * r12.data) % modular2::mod();res[i] = xy0[i].data + w1 * b + w2 * c;}return res;}};template<class T> vector<T> number_theoric_transform_wrapper<T>::root;template<class T> vector<T> number_theoric_transform_wrapper<T>::buffer1;template<class T> vector<T> number_theoric_transform_wrapper<T>::buffer2;using ntt = number_theoric_transform_wrapper<modular>;// Specialized for FFTtemplate<class T, class FFT>struct power_series_base: vector<T>{#define data (*this)power_series_base &_inplace_transform(bool invert = false){FFT::transform(data, invert);return *this;}power_series_base _transform(bool invert = false) const{return power_series_base(*this)._inplace_transform(invert);}template<class ...Args>power_series_base(Args... args): vector<T>(args...){}power_series_base(initializer_list<T> init): vector<T>(init){}operator bool() const{return find_if(data.begin(), data.end(), [&](const T &x){ return x != T{0}; }) != data.end();}// Returns \sum_{i=0}^{n-1} a_i/i! * X^istatic power_series_base EGF(vector<T> a){int n = (int)a.size();T fact = 1;for(auto x = 2; x < n; ++ x) fact *= x;fact = 1 / fact;for(auto i = n - 1; i >= 0; -- i) a[i] *= fact, fact *= i;return power_series_base(a);}// Returns exp(coef * X).take(n) = \sum_{i=0}^{n-1} coef^i/i! * X^istatic power_series_base EGF(int n, T coef = 1){vector<T> a(n, 1);for(auto i = 1; i < n; ++ i) a[i] = a[i - 1] * coef;return EGF(a);}vector<T> EGF_to_seq() const{int n = (int)data.size();vector<T> seq(n);T fact = 1;for(auto i = 0; i < n; ++ i){seq[i] = data[i] * fact;fact *= i + 1;}return seq;}power_series_base &inplace_reduce(){while(!data.empty() && !data.back()) data.pop_back();return *this;}power_series_base reduce() const{return power_series_base(*this).inplace_reduce();}friend ostream &operator<<(ostream &out, const power_series_base &p){if(p.empty()) return out << "{}";else{out << "{";for(auto i = 0; i < (int)p.size(); ++ i){out << p[i];i + 1 < (int)p.size() ? out << ", " : out << "}";}return out;}}power_series_base &inplace_take(int n){data.erase(data.begin() + min((int)data.size(), n), data.end());data.resize(n, T{0});return *this;}power_series_base take(int n) const{auto res = vector<T>(data.begin(), data.begin() + min((int)data.size(), n));res.resize(n, T{0});return res;}power_series_base &inplace_drop(int n){data.erase(data.begin(), data.begin() + min((int)data.size(), n));return *this;}power_series_base drop(int n) const{return vector<T>(data.begin() + min((int)data.size(), n), data.end());}power_series_base &inplace_slice(int l, int r){assert(0 <= l && l <= r);data.erase(data.begin(), data.begin() + min((int)data.size(), l));data.resize(r - l, T{0});return *this;}power_series_base slice(int l, int r) const{auto res = vector<T>(data.begin() + min((int)data.size(), l), data.begin() + min((int)data.size(), r));res.resize(r - l, T{0});return res;}power_series_base &inplace_reverse(int n){data.resize(max(n, (int)data.size()), T{0});std::reverse(data.begin(), data.begin() + n);return *this;}power_series_base reverse(int n) const{return power_series_base(*this).inplace_reverse(n);}power_series_base &inplace_shift(int n, T x = T{0}){data.insert(data.begin(), n, x);return *this;}power_series_base shift(int n, T x = T{0}) const{return power_series_base(*this).inplace_shift(n, x);}T evaluate(T x) const{T res = {};for(auto i = (int)data.size() - 1; i >= 0; -- i) res = res * x + data[i];return res;}// Takes mod x^n-1power_series_base &inplace_circularize(int n){assert(n >= 1);for(auto i = n; i < (int)data.size(); ++ i) data[i % n] += data[i];data.resize(n, T{0});return *this;}// Takes mod x^n-1power_series_base circularize(int n) const{return power_series_base(*this).inplace_circularize(n);}power_series_base operator*(const power_series_base &p) const{return FFT::convolute(data, p);}power_series_base &operator*=(const power_series_base &p){return *this = *this * p;}template<class U>power_series_base &operator*=(U x){for(auto &c: data) c *= x;return *this;}template<class U>power_series_base operator*(U x) const{return power_series_base(*this) *= x;}template<class U>friend power_series_base operator*(U x, power_series_base p){for(auto &c: p) c = x * c;return p;}// Compute p^e mod x^n - 1.template<class U>power_series_base &inplace_power_circular(U e, int n){assert(n >= 1);power_series_base p = *this;data.assign(n, 0);data[0] = 1;for(; e; e >>= 1){if(e & 1) (*this *= p).inplace_circularize(n);(p *= p).inplace_circularize(n);}return *this;}template<class U>power_series_base power_circular(U e, int len) const{return power_series_base(*this).inplace_power_circular(e, len);}power_series_base &operator+=(const power_series_base &p){data.resize(max(data.size(), p.size()), T{0});for(auto i = 0; i < (int)p.size(); ++ i) data[i] += p[i];return *this;}power_series_base operator+(const power_series_base &p) const{return power_series_base(*this) += p;}template<class U>power_series_base &operator+=(const U &x){if(data.empty()) data.emplace_back();data[0] += x;return *this;}template<class U>power_series_base operator+(const U &x) const{return power_series_base(*this) += x;}template<class U>friend power_series_base operator+(const U &x, const power_series_base &p){return p + x;}power_series_base &operator-=(const power_series_base &p){data.resize(max(data.size(), p.size()), T{0});for(auto i = 0; i < (int)p.size(); ++ i) data[i] -= p[i];return *this;}power_series_base operator-(const power_series_base &p) const{return power_series_base(*this) -= p;}template<class U>power_series_base &operator-=(const U &x){if(data.empty()) data.emplace_back();data[0] -= x;return *this;}template<class U>power_series_base operator-(const U &x) const{return power_series_base(*this) -= x;}template<class U>friend power_series_base operator-(const U &x, const power_series_base &p){return -p + x;}power_series_base operator-() const{power_series_base res = *this;for(auto i = 0; i < data.size(); ++ i) res[i] = T{0} - res[i];return res;}power_series_base &operator++(){if(data.empty()) data.push_back(1);else ++ data[0];return *this;}power_series_base &operator--(){if(data.empty()) data.push_back(-1);else -- data[0];return *this;}power_series_base operator++(int){power_series_base result(*this);if(data.empty()) data.push_back(1);else ++ data[0];return result;}power_series_base operator--(int){power_series_base result(*this);if(data.empty()) data.push_back(-1);else -- data[0];return result;}power_series_base &inplace_clear_range(int l, int r){assert(0 <= l && l <= r);for(auto i = l; i < min(r, (int)data.size()); ++ i) data[i] = T{0};return *this;}power_series_base clear_range(int l, int r) const{return power_series_base(*this).inplace_clear_range(l, r);}power_series_base &inplace_dot_product(const power_series_base &p){for(auto i = 0; i < min(data.size(), p.size()); ++ i) data[i] *= p[i];return *this;}power_series_base dot_product(const power_series_base &p) const{return power_series_base(*this).inplace_power_series_product(p);}power_series_base &_inverse_doubled_up(power_series_base &f, const power_series_base &freq) const{assert((f.size() & -f.size()) == f.size());int s = f.size();power_series_base buffer = take(s << 1);buffer._inplace_transform();buffer.inplace_dot_product(freq);buffer._inplace_transform(true);buffer.inplace_clear_range(0, s);buffer._inplace_transform();buffer.inplace_dot_product(freq);buffer._inplace_transform(true);f.resize(s << 1, T{0});return f -= buffer.inplace_clear_range(0, s);}power_series_base &_inverse_doubled_up(power_series_base &f) const{assert((f.size() & -f.size()) == f.size());return _inverse_doubled_up(f, f.take(f.size() << 1)._transform());}// Returns the first n terms of the inverse series// O(n * log(n))power_series_base inverse(int n) const{assert(!data.empty() && data[0] != T{0});auto inv = 1 / data[0];power_series_base res{inv};for(auto s = 1; s < n; s <<= 1) _inverse_doubled_up(res);res.resize(n, T{0});return res;}// Returns the first n terms of the inverse series// O(n * log(n))power_series_base &inplace_inverse(int n){return *this = this->inverse(n);}// O(n * log(n))power_series_base &inplace_power_series_division(power_series_base p, int n){int i = 0;while(i < min(data.size(), p.size()) && !data[i] && !p[i]) ++ i;data.erase(data.begin(), data.begin() + i);p.erase(p.begin(), p.begin() + i);(*this *= p.inverse(n)).resize(n, T{0});return *this;}// O(n * log(n))power_series_base power_series_division(const power_series_base &p, int n){return power_series_base(*this).inplace_power_series_division(p, n);}// Euclidean division// O(min(n * log(n), # of non-zero indices))power_series_base &operator/=(const power_series_base &p){int n = (int)p.size();while(n && p[n - 1] == T{0}) -- n;assert(n >= 1);reduce();if(data.size() < n){data.clear();return *this;}if(n - count(p.begin(), p.begin() + n, T{0}) <= 100){T inv = 1 / p[n - 1];static vector<int> indices;for(auto i = 0; i < n - 1; ++ i) if(p[i]) indices.push_back(i);power_series_base res((int)data.size() - n + 1);for(auto i = (int)data.size() - 1; i >= n - 1; -- i) if(data[i]){T x = data[i] * inv;res[i - n + 1] = x;for(auto j: indices) data[i - (n - 1 - j)] -= x * p[j];}indices.clear();return *this = res;}power_series_base b;n = data.size() - p.size() + 1;b.assign(n, {});copy(p.rbegin(), p.rbegin() + min(p.size(), b.size()), b.begin());std::reverse(data.begin(), data.end());data = FFT::convolute(data, b.inverse(n));data.erase(data.begin() + n, data.end());std::reverse(data.begin(), data.end());return *this;}power_series_base operator/(const power_series_base &p) const{return power_series_base(*this) /= p;}template<class U>power_series_base &operator/=(U x){assert(x);T inv_x = T(1) / x;for(auto &c: data) c *= inv_x;return *this;}template<class U>power_series_base operator/(U x) const{return power_series_base(*this) /= x;}pair<power_series_base, power_series_base> divrem(const power_series_base &p) const{auto q = *this / p, r = *this - q * p;while(!r.empty() && r.back() == 0) r.pop_back();return {q, r};}power_series_base &operator%=(const power_series_base &p){int n = (int)p.size();while(n && p[n - 1] == T{0}) -- n;assert(n >= 1);reduce();if(data.size() < n) return *this;if(n - count(p.begin(), p.begin() + n, 0) <= 100){T inv = 1 / p[n - 1];static vector<int> indices;for(auto i = 0; i < n - 1; ++ i) if(p[i]) indices.push_back(i);for(auto i = (int)data.size() - 1; i >= n - 1; -- i) if(data[i]){T x = data[i] * inv;data[i] = 0;for(auto j: indices) data[i - (n - 1 - j)] -= x * p[j];}indices.clear();return reduce();}return *this = this->divrem(p).second;}power_series_base operator%(const power_series_base &p) const{return power_series_base(*this) %= p;}power_series_base &inplace_derivative(){if(!data.empty()){for(auto i = 0; i < data.size(); ++ i) data[i] *= i;data.erase(data.begin());}return *this;}// p'power_series_base derivative() const{return power_series_base(*this).inplace_derivative();}power_series_base &inplace_derivative_shift(){for(auto i = 0; i < data.size(); ++ i) data[i] *= i;return *this;}// xP'power_series_base derivative_shift() const{return power_series_base(*this).inplace_derivative_shift();}power_series_base &inplace_antiderivative(){T::precalc_inverse(data.size());data.push_back(0);for(auto i = (int)data.size() - 1; i >= 1; -- i) data[i] = data[i - 1] / i;data[0] = 0;return *this;}// Integral(P)power_series_base antiderivative() const{return power_series_base(*this).inplace_antiderivative();}power_series_base &inplace_shifted_antiderivative(){T::precalc_inverse(data.size());if(!data.empty()) data[0] = 0;for(auto i = 1; i < data.size(); ++ i) data[i] /= i;return *this;}// Integral(P/x)power_series_base shifted_antiderivative() const{return power_series_base(*this).inplace_shifted_antiderivative();}// O(n * log(n))power_series_base &inplace_log(int n){assert(!data.empty() && data[0] == 1);if(!n){data.clear();return *this;}(*this = derivative() * inverse(n)).resize(n - 1, T{0});inplace_antiderivative();return *this;}// O(n * log(n))power_series_base log(int n) const{return power_series_base(*this).inplace_log(n);}// O(n * log(n))power_series_base exp(int n) const{assert(data.empty() || data[0] == 0);power_series_base f{1}, g{1};for(auto s = 1; s < n; s <<= 1){power_series_base f2 = f.take(s << 1)._inplace_transform();power_series_base g2 = g.take(s << 1)._inplace_transform();power_series_base dt = take(s).inplace_derivative_shift();power_series_base w = dt;w._inplace_transform();for(auto i = 0; i < s; ++ i) w[i] *= f2[i << 1];w._inplace_transform(true);w -= f.derivative_shift();w.resize(s << 1, T{0});w._inplace_transform();w.inplace_dot_product(g2);w._inplace_transform(true);w.resize(s, T{0});w.insert(w.begin(), s, 0);w -= dt;power_series_base z = take(s << 1);z += w.inplace_shifted_antiderivative();z._inplace_transform();z.inplace_dot_product(f2);z._inplace_transform(true);f.resize(s << 1, T{0});f += z.inplace_clear_range(0, s);if(s << 1 < n) f._inverse_doubled_up(g, g2);}f.resize(n, T{0});return f;}// O(n * log(n))power_series_base &inplace_exp(int n){return *this = this->exp(n);}// O(n * log(n))template<class U>power_series_base &inplace_power(U e, int n){data.resize(n, T{0});if(e == 0 || n == 0){if(n) data[0] = T{1};return *this;}if(e < 0) return inplace_inverse(n).inplace_power(-e, n);if(all_of(data.begin(), data.end(), [&](auto x){ return x == T{0}; })) return *this;int pivot = find_if(data.begin(), data.end(), [&](auto x){ return x; }) - data.begin();if(pivot && e >= (n + pivot - 1) / pivot){fill(data.begin(), data.end(), T{0});return *this;}data.erase(data.begin(), data.begin() + pivot);n -= pivot * e;T pivot_c = data[0].power(e);((*this /= data[0]).inplace_log(n) *= e).inplace_exp(n);data.insert(data.begin(), pivot * e, T{0});return *this *= pivot_c;}// O(n * log(n))template<class U>power_series_base power(U e, int n) const{return power_series_base(*this).inplace_power(e, n);}// Suppose there are data[i] distinct objects with weight i.// Returns a power series where i-th coefficient represents # of ways to select a set of objects with sum of weight i.// O(n * log(n))power_series_base &inplace_set(int n){assert(!data.empty() && data[0] == T{0});data.resize(n);for(auto i = n - 1; i >= 1; -- i) for(auto j = 2 * i; j < n; j += i) data[j] += data[i];for(auto i = 1; i < n; ++ i) (data[i] /= i) *= (i & 1 ? 1 : -1);return inplace_exp(n);}power_series_base set(int n) const{return power_series_base(*this).inplace_set(n);}// Suppose there are data[i] distinct objects with weight i.// Returns a power series where i-th coefficient represents # of ways to select a multiset of objects with sum of weight i.// O(n * log(n))power_series_base &inplace_multiset(int n){assert(!data.empty() && data[0] == T{0});data.resize(n);static vector<T> inv;inv.resize(n);for(auto i = 1; i < n; ++ i) inv[i] = T{1} / i;for(auto i = n - 1; i >= 1; -- i) for(auto j = 2 * i; j < n; j += i) data[j] += data[i] * inv[j / i];inv.clear(), inv.shrink_to_fit();return inplace_exp(n);}power_series_base multiset(int n) const{return power_series_base(*this).inplace_multiset(n);}static power_series_base multiply_all(const vector<power_series_base> &a){if(a.empty()) return {1};auto solve = [&](auto self, int l, int r)->power_series_base{if(r - l == 1) return a[l];int m = l + (r - l >> 1);return self(self, l, m) * self(self, m, r);};return solve(solve, 0, (int)a.size());}#undef data};// Requires modular and number_theoric_transformusing power_series = power_series_base<modular, ntt>;template<class T>struct combinatorics{// O(n)static vector<T> precalc_fact(int n){vector<T> f(n + 1, 1);for(auto i = 1; i <= n; ++ i) f[i] = f[i - 1] * i;return f;}// O(n * m)static vector<vector<T>> precalc_C(int n, int m){vector<vector<T>> c(n + 1, vector<T>(m + 1));for(auto i = 0; i <= n; ++ i) for(auto j = 0; j <= min(i, m); ++ j) c[i][j] = i && j ? c[i - 1][j - 1] + c[i - 1][j] : T(1);return c;}int SZ = 0;vector<T> inv, fact, invfact;combinatorics(){ }// O(SZ)combinatorics(int SZ): SZ(SZ), inv(SZ + 1, 1), fact(SZ + 1, 1), invfact(SZ + 1, 1){for(auto i = 1; i <= SZ; ++ i) fact[i] = fact[i - 1] * i;invfact[SZ] = 1 / fact[SZ];for(auto i = SZ - 1; i >= 0; -- i){invfact[i] = invfact[i + 1] * (i + 1);inv[i + 1] = invfact[i + 1] * fact[i];}}// O(1)T C(int n, int k) const{return n < 0 ? C(-n + k - 1, k) * (k & 1 ? -1 : 1) : n < k || k < 0 ? T() : fact[n] * invfact[k] * invfact[n - k];}// O(1)T P(int n, int k) const{return n < k ? T() : fact[n] * invfact[n - k];}// O(1)T H(int n, int k) const{return C(n + k - 1, k);}// O(min(k, n - k))T naive_C(long long n, long long k) const{if(n < k) return 0;T res = 1;k = min(k, n - k);for(auto i = n; i > n - k; -- i) res *= i;return res * invfact[k];}// O(k)T naive_P(long long n, int k) const{if(n < k) return 0;T res = 1;for(auto i = n; i > n - k; -- i) res *= i;return res;}// O(k)T naive_H(long long n, int k) const{return naive_C(n + k - 1, k);}// O(1)bool parity_C(long long n, long long k) const{return n < k ? false : (n & k) == k;}// Number of ways to place n '('s and k ')'s starting with m copies of '(' such that in each prefix, number of '(' is equal or greater than ')'// Catalan(n, n, 0): n-th catalan number// Catalan(s, s+k-1, k-1): sum of products of k catalan numbers where the index of product sums up to s.// O(1)T Catalan(int n, int k, int m = 0) const{assert(0 <= min({n, k, m}));return k <= m ? C(n + k, n) : k <= n + m ? C(n + k, n) - C(n + k, k - m - 1) : T();}};int main(){cin.tie(0)->sync_with_stdio(0);cin.exceptions(ios::badbit | ios::failbit);int n, m;cin >> n >> m;if(n & 1){cout << "0\n";return 0;}combinatorics<modular> C(2 * n);vector<power_series> a;for(auto i = 0; i < m; ++ i){int l, r;cin >> l >> r, -- l;if(r - l + 1 & 1){int len = r - l >> 1;vector<modular> p(len + 1);p[0] = 1;p[len] = -C.Catalan(len, len);a.push_back(p);}}auto prod = power_series::multiply_all(a);modular res = 0;for(auto i = 0; i < (int)prod.size(); ++ i){int rem = n / 2 - i;res += prod[i] * C.Catalan(rem, rem);}cout << res << "\n";return 0;}/**/