結果
| 問題 |
No.2602 Real Collider
|
| コンテスト | |
| ユーザー |
FromBooska
|
| 提出日時 | 2024-01-13 21:52:19 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,995 bytes |
| コンパイル時間 | 147 ms |
| コンパイル使用メモリ | 82,360 KB |
| 実行使用メモリ | 78,252 KB |
| 最終ジャッジ日時 | 2024-09-28 01:48:01 |
| 合計ジャッジ時間 | 20,545 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 38 WA * 40 |
ソースコード
# 最小含有円を求めるコード、Minimum enclosing circle using Welzl’s algorithm
# https://www.geeksforgeeks.org/minimum-enclosing-circle-using-welzls-algorithm/
# Python3 program to find the minimum enclosing
# circle for N integer points in a 2-D plane
from math import sqrt
from random import randint,shuffle
# Defining infinity
INF = 1e18
# Structure to represent a 2D point
class Point :
def __init__(self,X=0,Y=0) -> None:
self.X=X
self.Y=Y
# Structure to represent a 2D circle
class Circle :
def __init__(self,c=Point(),r=0) -> None:
self.C=c
self.R=r
# Function to return the euclidean distance
# between two points
def dist(a, b):
return sqrt(pow(a.X - b.X, 2)
+ pow(a.Y - b.Y, 2))
# Function to check whether a point lies inside
# or on the boundaries of the circle
def is_inside(c, p):
return dist(c.C, p) <= c.R
# The following two functions are used
# To find the equation of the circle when
# three points are given.
# Helper method to get a circle defined by 3 points
def get_circle_center(bx, by, cx, cy):
B = bx * bx + by * by
C = cx * cx + cy * cy
D = bx * cy - by * cx
return Point((cy * B - by * C) / (2 * D),
(bx * C - cx * B) / (2 * D))
# Function to return the smallest circle
# that intersects 2 points
def circle_from1(A, B):
# Set the center to be the midpoint of A and B
C = Point((A.X + B.X) / 2.0, (A.Y + B.Y) / 2.0 )
# Set the radius to be half the distance AB
return Circle(C, dist(A, B) / 2.0 )
# Function to return a unique circle that intersects three points
def circle_from2(A, B, C):
I = get_circle_center(B.X - A.X, B.Y - A.Y, C.X - A.X, C.Y - A.Y)
I.X += A.X
I.Y += A.Y
return Circle(I, dist(I, A))
# Function to check whether a circle encloses the given points
def is_valid_circle(c, P):
# Iterating through all the points
# to check whether the points
# lie inside the circle or not
for p in P:
if (not is_inside(c, p)):
return False
return True
# Function to return the minimum enclosing circle for N <= 3
def min_circle_trivial(P):
assert(len(P) <= 3)
if not P :
return Circle()
elif (len(P) == 1) :
return Circle(P[0], 0)
elif (len(P) == 2) :
return circle_from1(P[0], P[1])
# To check if MEC can be determined
# by 2 points only
for i in range(3):
for j in range(i + 1,3):
c = circle_from1(P[i], P[j])
if (is_valid_circle(c, P)):
return c
return circle_from2(P[0], P[1], P[2])
# Returns the MEC using Welzl's algorithm
# Takes a set of input points P and a set R
# points on the circle boundary.
# n represents the number of points in P
# that are not yet processed.
def welzl_helper(P, R, n):
# Base case when all points processed or |R| = 3
if (n == 0 or len(R) == 3) :
return min_circle_trivial(R)
# Pick a random point randomly
idx = randint(0,n-1)
p = P[idx]
# Put the picked point at the end of P
# since it's more efficient than
# deleting from the middle of the vector
P[idx], P[n - 1]=P[n-1],P[idx]
# Get the MEC circle d from the
# set of points P - :p
d = welzl_helper(P, R.copy(), n - 1)
# If d contains p, return d
if (is_inside(d, p)) :
return d
# Otherwise, must be on the boundary of the MEC
R.append(p)
# Return the MEC for P - :p and R U :p
return welzl_helper(P, R.copy(), n - 1)
def welzl(P):
P_copy = P.copy()
shuffle(P_copy)
return welzl_helper(P_copy, [], len(P_copy))
'''
# Driver code
if __name__ == '__main__':
mec = welzl([Point(0, 0), Point(0, 1), Point(1, 0) ])
print("Center = {",mec.C.X,",", mec.C.Y,"} Radius =",mec.R)
mec2 = welzl([Point(5, -2), Point(-3, -2), Point(-2, 5), Point(1, 6), Point(0, 2)] )
print("Center = {",mec2.C.X,",",mec2.C.Y,"} Radius =",mec2.R)
'''
Q = int(input())
x1, y1, x2, y2, x3, y3 = map(int, input().split())
mec = welzl([Point(x1, y1), Point(x2, y2), Point(x3, y3) ])
points = []
for i in range(Q):
x, y = map(int, input().split())
if (x-mec.C.X)**2+(y-mec.C.Y)**2 <= mec.R**2:
print('Yes')
else:
print('No')
FromBooska