結果
問題 | No.2602 Real Collider |
ユーザー | coindarw |
提出日時 | 2024-01-14 00:44:35 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 23,903 bytes |
コンパイル時間 | 5,059 ms |
コンパイル使用メモリ | 319,704 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-28 01:53:37 |
合計ジャッジ時間 | 9,632 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 51 ms
5,376 KB |
testcase_11 | AC | 20 ms
5,376 KB |
testcase_12 | AC | 25 ms
5,376 KB |
testcase_13 | AC | 14 ms
5,376 KB |
testcase_14 | AC | 29 ms
5,376 KB |
testcase_15 | WA | - |
testcase_16 | AC | 23 ms
5,376 KB |
testcase_17 | WA | - |
testcase_18 | AC | 17 ms
5,376 KB |
testcase_19 | AC | 22 ms
5,376 KB |
testcase_20 | WA | - |
testcase_21 | AC | 18 ms
5,376 KB |
testcase_22 | AC | 20 ms
5,376 KB |
testcase_23 | AC | 14 ms
5,376 KB |
testcase_24 | AC | 20 ms
5,376 KB |
testcase_25 | AC | 20 ms
5,376 KB |
testcase_26 | WA | - |
testcase_27 | AC | 23 ms
5,376 KB |
testcase_28 | WA | - |
testcase_29 | AC | 21 ms
5,376 KB |
testcase_30 | AC | 22 ms
5,376 KB |
testcase_31 | AC | 23 ms
5,376 KB |
testcase_32 | AC | 19 ms
5,376 KB |
testcase_33 | WA | - |
testcase_34 | AC | 23 ms
5,376 KB |
testcase_35 | AC | 15 ms
5,376 KB |
testcase_36 | WA | - |
testcase_37 | AC | 24 ms
5,376 KB |
testcase_38 | AC | 26 ms
5,376 KB |
testcase_39 | AC | 25 ms
5,376 KB |
testcase_40 | WA | - |
testcase_41 | AC | 28 ms
5,376 KB |
testcase_42 | WA | - |
testcase_43 | WA | - |
testcase_44 | AC | 28 ms
5,376 KB |
testcase_45 | AC | 17 ms
5,376 KB |
testcase_46 | AC | 18 ms
5,376 KB |
testcase_47 | AC | 25 ms
5,376 KB |
testcase_48 | AC | 19 ms
5,376 KB |
testcase_49 | AC | 18 ms
5,376 KB |
testcase_50 | WA | - |
testcase_51 | WA | - |
testcase_52 | AC | 10 ms
5,376 KB |
testcase_53 | AC | 24 ms
5,376 KB |
testcase_54 | AC | 19 ms
5,376 KB |
testcase_55 | WA | - |
testcase_56 | WA | - |
testcase_57 | AC | 19 ms
5,376 KB |
testcase_58 | AC | 8 ms
5,376 KB |
testcase_59 | AC | 22 ms
5,376 KB |
testcase_60 | WA | - |
testcase_61 | WA | - |
testcase_62 | AC | 23 ms
5,376 KB |
testcase_63 | WA | - |
testcase_64 | AC | 31 ms
5,376 KB |
testcase_65 | WA | - |
testcase_66 | AC | 26 ms
5,376 KB |
testcase_67 | AC | 12 ms
5,376 KB |
testcase_68 | AC | 14 ms
5,376 KB |
testcase_69 | AC | 10 ms
5,376 KB |
testcase_70 | AC | 12 ms
5,376 KB |
testcase_71 | AC | 16 ms
5,376 KB |
testcase_72 | WA | - |
testcase_73 | WA | - |
testcase_74 | AC | 22 ms
5,376 KB |
testcase_75 | WA | - |
testcase_76 | AC | 21 ms
5,376 KB |
testcase_77 | AC | 22 ms
5,376 KB |
testcase_78 | AC | 28 ms
5,376 KB |
testcase_79 | AC | 23 ms
5,376 KB |
testcase_80 | AC | 28 ms
5,376 KB |
ソースコード
#ifdef ONLINE_JUDGE #include <bits/stdc++.h> #include <atcoder/all> #else #include <mylibs/all.h> #endif using ll = long long; using lll = __int128_t; #define rep(i, n) for (int i = 0, i##_len = (n); i < i##_len; ++i) #define reps(i, n) for (int i = 1, i##_len = (n); i <= i##_len; ++i) #define rrep(i, n) for (int i = ((int)(n)-1); i >= 0; --i) #define rreps(i, n) for (int i = ((int)(n)); i > 0; --i) #define rep2(i, s, n) for (int i = (s); i < (int)(n); i++) #define repc2(i, s, n) for (int i = (s); i <= (int)(n); i++) #define length(v) ((int)(v).size()) constexpr int inf = 2'000'000'000; constexpr ll linf = 4'000'000'000'000'000'000, M7 = 1'000'000'007, M9 = 998'244'353; #define all(v) begin(v), end(v) #define rall(v) rbegin(v), rend(v) using namespace std; using namespace atcoder; // clang-format off #define Vec(type, ...) __make_vec<type>(__VA_ARGS__) template <class T> vector<T> __make_vec(size_t a) {return vector<T>(a);}template <class T, class... Ts> auto __make_vec(size_t a, Ts... ts) {return vector<decltype(__make_vec<T>(ts...))>(a, __make_vec<T>(ts...));} #define VecI(init, type, ...) __make_vecI<type, init>(__VA_ARGS__) template <class T, T init>vector<T> __make_vecI(size_t a) {return vector<T>(a, init);} template <class T, T init, class... Ts> auto __make_vecI(size_t a, Ts... ts) {return vector<decltype(__make_vecI<T, init>(ts...))>(a, __make_vecI<T, init>(ts...));} template <typename T, typename U>inline ostream& operator<<(ostream& os, const pair<T, U>& p) noexcept {return os << p.first << " " << p.second;} inline ostream& operator<<(ostream& os, const modint& m) noexcept { return os << m.val(); } template <int M>inline ostream& operator<<(ostream& os, const static_modint<M>& m) noexcept { return os << m.val(); } template <typename T> struct is_static_modint : std::false_type {}; template <int MOD> struct is_static_modint<static_modint<MOD>> : std::true_type {}; template <template <typename...> typename C, typename Number>concept MyContainer = std::is_same_v<C<Number>, std::vector<Number>> || std::is_same_v<C<Number>, std::deque<Number>> || std::is_same_v<C<Number>, std::set<Number>> || std::is_same_v<C<Number>, std::unordered_set<Number>> || std::is_same_v<C<Number>, std::unordered_multiset<Number>> || std::is_same_v<C<Number>, std::multiset<Number>>; template <typename Number>concept MyNumber = std::is_same_v<Number, int> || std::is_same_v<Number, ll> || std::is_same_v<Number, char> || std::is_same_v<Number, modint> || is_static_modint<Number>::value; template <template <typename...> typename C, typename Number>concept MyContainerNumber = MyContainer<C, Number> && MyNumber<Number>; template <template <typename...> typename OutCon, template <typename...> typename InCon, typename Number>concept MyNestedContainerNumber = MyContainer<OutCon, InCon<Number>> && MyContainerNumber<InCon, Number>; template <template <typename...> typename C, typename Number>requires MyContainerNumber<C, Number>std::ostream& operator<<(std::ostream& os, const C<Number>& t) {auto itr = t.begin();auto end = t.end();if (itr != end) {os << *itr++;for (; itr != end; ++itr) os << ' ' << *itr;}return os;} template <template <typename...> typename OutCon, template <typename...> typename InCon, typename Number>requires MyNestedContainerNumber<OutCon, InCon, Number>std::ostream& operator<<(std::ostream& os, const OutCon<InCon<Number>>& t) {auto itr = t.begin();auto end = t.end();if (itr != end) {os << *itr++;for (; itr != end; ++itr) os << '\n' << *itr;}return os;} template <typename T, typename U>istream& operator>>(istream& is, pair<T, U>& p) {return is >> p.first >> p.second;} template <typename T>istream& operator>>(istream& is, vector<T>& v) {for (auto& e : v) is >> e;return is;} void inp() {} template <typename T, typename... Args>void inp(T& a, Args&... args) {cin >> a, inp(args...);} template <typename T>void inp1(vector<T>& v, int offset = 1, int len = -1) {if (len == -1) len = int(v.size()) - offset;assert(offset >= 0 && len >= 0);for (int i = offset; i < offset + len; ++i) cin >> v[i];} template <typename T>void oup(const T& a) {cout << a << "\n";} template <typename T, typename... Args>void oup(const T& a, const Args&... args) {cout << a << " ", oup(args...);} inline string YESNO(bool cond) { return cond ? "YES" : "NO"; }inline string yesno(bool cond) { return cond ? "yes" : "no"; }inline string YesNo(bool cond) { return cond ? "Yes" : "No"; } inline auto add1(auto vec, ll offset = 1) {for (auto& e : vec) e += offset;return vec;} #ifdef ONLINE_JUDGE #define debug(...) #else #define debug(...) cerr << "<" << #__VA_ARGS__ << ">: ", debug_out(__VA_ARGS__) template <typename T>void debug_out(T t) {cerr << t << "\n";} template <typename T, typename... Args>void debug_out(T t, Args... args) {cerr << t << ", ";debug_out(args...);} #endif #ifdef ONLINE_JUDGE #define todo(...) static_assert(false) #else #define todo(...) #endif // clang-format on class Geometry { constexpr static double eps = 1e-10; public: enum { COUNTER_CLOCKWISE = 1, CLOCKWISE = -1, ONLINE_BACK = 2, ONLINE_FRONT = -2, ON_SEGMENT = 0, }; class PointF; class PointI { // integer public: ll x, y; constexpr PointI(ll x = 0, ll y = 0) : x(x), y(y) {} constexpr PointI(PointF p) : x(p.x), y(p.y) {} constexpr PointI operator+(const PointI& p) const { return PointI(x + p.x, y + p.y); } constexpr PointI operator-(const PointI& p) const { return PointI(x - p.x, y - p.y); } constexpr PointI operator-() const { return PointI(-x, -y); } constexpr PointI operator*(ll a) const { return PointI(a * x, a * y); } constexpr PointI operator/(ll a) const { return PointI(x / a, y / a); } constexpr PointI reduced() const { if (x == 0 && y == 0) return PointI(0, 0); ll g = gcd(x, y) * ((y < 0 || (y == 0 && x < 0)) ? -1 : 1); return PointI(x / g, y / g); } constexpr ll sqrMagnitude() const { return x * x + y * y; } constexpr double magnitude() const { return sqrt(sqrMagnitude()); } constexpr bool operator<(const PointI& p) const { return x != p.x ? x < p.x : y < p.y; } constexpr bool operator==(const PointI& p) const { return (x == p.x) && (y == p.y); } constexpr friend PointI operator*(ll a, const PointI& p) { return p * a; } friend std::ostream& operator<<(std::ostream& os, const PointI& p) noexcept { return os << p.x << " " << p.y; } friend std::istream& operator>>(std::istream& is, PointI& p) noexcept { return is >> p.x >> p.y; } }; class PointF { // float public: double x, y; constexpr PointF(double x = 0, double y = 0) : x(x), y(y) {} constexpr PointF(PointI p) : x(p.x), y(p.y) {} constexpr PointF operator+(PointF p) const { return PointF(x + p.x, y + p.y); } constexpr PointF operator-(PointF p) const { return PointF(x - p.x, y - p.y); } constexpr PointF operator-() const { return PointF(-x, -y); } constexpr PointF operator*(double a) const { return PointF(a * x, a * y); } constexpr PointF operator/(double a) const { return PointF(x / a, y / a); } constexpr PointF normalized() const { double a = magnitude(); return (abs(a) < eps) ? PointF(0, 0) : PointF(x / a, y / a); } constexpr double sqrMagnitude() const { return x * x + y * y; } constexpr double magnitude() const { return sqrt(sqrMagnitude()); } constexpr bool operator<(const PointF& p) const { return x != p.x ? x < p.x : y < p.y; } constexpr bool operator==(const PointF& p) const { return (fabs(x - p.x) < eps) && (fabs(y - p.y) < eps); } constexpr bool operator!=(const PointF& p) const { return !(*this == p); } constexpr friend PointF operator*(double a, const PointF& p) { return p * a; } friend std::ostream& operator<<(std::ostream& os, const PointF& p) noexcept { return os << p.x << " " << p.y; } friend std::istream& operator>>(std::istream& is, PointF& p) noexcept { return is >> p.x >> p.y; } }; struct SegmentI { PointI p1, p2; }; struct SegmentF { PointF p1, p2; }; using VectorI = PointI; using LineI = SegmentI; using PolygonI = vector<PointI>; using VectorF = PointF; using LineF = SegmentF; using PolygonF = vector<PointF>; // 整数 constexpr static ll dot(VectorI a, VectorI b) { return a.x * b.x + a.y * b.y; } constexpr static ll cross(VectorI a, VectorI b) { return a.x * b.y - a.y * b.x; } constexpr static int ccw(PointI p0, PointI p1, PointI p2) { VectorI v1 = p1 - p0; VectorI v2 = p2 - p0; if (cross(v1, v2) > 0) return COUNTER_CLOCKWISE; if (cross(v1, v2) < 0) return CLOCKWISE; if (dot(v1, v2) < 0) return ONLINE_BACK; if (v1.sqrMagnitude() < v2.sqrMagnitude()) return ONLINE_FRONT; return ON_SEGMENT; } constexpr static bool intersect(PointI p1, PointI p2, PointI p3, PointI p4) { return (ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0) && (ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0); } constexpr static bool intersect(SegmentI s1, SegmentI s2) { return intersect(s1.p1, s1.p2, s2.p1, s2.p2); } constexpr static bool intersectSL(SegmentI s, LineI l) { return cross(l.p2 - l.p1, s.p1 - l.p1) * cross(l.p2 - l.p1, s.p2 - l.p1) <= 0; } constexpr static ll getDistanceSqr(PointI a, PointI b) { return (b.x - a.x) * (b.x - a.x) + (b.y - a.y) * (b.y - a.y); } constexpr static double getDistanceLP(LineI l, PointI p) { return fabs(cross(l.p2 - l.p1, p - l.p1)) / (l.p2 - l.p1).magnitude(); } constexpr static double getDistanceSP(SegmentI s, PointI p) { if (dot(s.p2 - s.p1, p - s.p1) < 0) return (p - s.p1).magnitude(); if (dot(s.p1 - s.p2, p - s.p2) < 0) return (p - s.p2).magnitude(); return getDistanceLP(s, p); } constexpr static double getDistance(SegmentI s1, SegmentI s2) { if (intersect(s1, s2)) return 0; return min(min(getDistanceSP(s1, s2.p1), getDistanceSP(s1, s2.p2)), min(getDistanceSP(s2, s1.p1), getDistanceSP(s2, s1.p2))); } // 凸包を求め、反時計回りで返す static PolygonI convexHull(const PolygonI& polygon, bool strict = true) { auto ps = polygon; sort(all(ps)); ps.erase(unique(all(ps)), ps.end()); const int n = ps.size(); PolygonI qs(n * 2); int k = 0; for (int i = 0; i < n; ++i) { ll cr; while (k >= 2 && (cr = cross(qs[k - 1] - qs[k - 2], ps[i] - qs[k - 2]) < 0 || (strict && cr == 0))) k--; qs[k++] = ps[i]; } for (int i = n - 1, t = k + 1; i > 0; --i) { ll cr; while (k >= t && (cr = cross(qs[k - 1] - qs[k - 2], ps[i - 1] - qs[k - 2]) < 0 || (strict && cr == 0))) k--; qs[k++] = ps[i - 1]; } qs.resize(k - 1); return qs; } static ll polygon_area_2(const PolygonI& ps) { // 多角形の面積の”2倍”,反時計回りに並んでる必要あり ll area = 0; const int n = ps.size(); reps(i, n - 2) { area += cross(ps[i] - ps[0], ps[i + 1] - ps[0]); } return area; } static bool is_convex(const PolygonI& ps) { // 凸多角形かどうか const int n = ps.size(); rep(i, n) { if (cross(ps[(i + 1) % n] - ps[i], ps[(i + 2) % n] - ps[i]) < 0) return false; } return true; } static int in_concave_polygon(const PointI& p, const PolygonI& G) { // G: 凸とは限らない多角形、反時計回り, O(n) // 0: out, 1: on, 2: in int cnt = 0; rep(i, G.size()) { if (ccw(G[i], G[(i + 1) % G.size()], p) == 0) { return 1; } VectorI v1 = G[i] - p; VectorI v2 = G[(i + 1) % G.size()] - p; if (v1.y > v2.y) { swap(v1, v2); } if (cross(v1, v2) > 0 && v1.y < 0 && v2.y >= 0) { cnt++; } } return (cnt % 2 == 1) ? 2 : 0; } static ll convexDiameterSqr(const PolygonI& polygon) { const int n = polygon.size(); int is = 0, js = 0; reps(i, n - 1) { if (polygon[i].y > polygon[is].y) is = i; if (polygon[i].y < polygon[js].y) js = i; } ll maxd = (polygon[is] - polygon[js]).sqrMagnitude(); int i, maxi, j, maxj; i = maxi = is; j = maxj = js; do { if (cross(polygon[(i + 1) % n] - polygon[i], polygon[(j + 1) % n] - polygon[j]) >= 0) { j = (j + 1) % n; } else { i = (i + 1) % n; } if ((polygon[i] - polygon[j]).sqrMagnitude() > maxd) { maxd = (polygon[i] - polygon[j]).sqrMagnitude(); maxi = i, maxj = j; } } while (i != is || j != js); return maxd; } // 実数 constexpr static double dot(VectorF a, VectorF b) { return a.x * b.x + a.y * b.y; } constexpr static double cross(VectorF a, VectorF b) { return a.x * b.y - a.y * b.x; } constexpr static VectorF projection(PointF p1, PointF p2, PointF p) { return (p2 - p1) * dot(p - p1, p2 - p1) / (p2 - p1).sqrMagnitude(); } constexpr static int ccw(PointF p0, PointF p1, PointF p2) { VectorF v1 = p1 - p0; VectorF v2 = p2 - p0; if (cross(v1, v2) > eps) return COUNTER_CLOCKWISE; if (cross(v1, v2) < -eps) return CLOCKWISE; if (dot(v1, v2) < -eps) return ONLINE_BACK; if (v1.sqrMagnitude() < v2.sqrMagnitude()) return ONLINE_FRONT; return ON_SEGMENT; } constexpr static double getDistanceSqr(PointF a, PointF b) { return (b.x - a.x) * (b.x - a.x) + (b.y - a.y) * (b.y - a.y); } constexpr static double getDistanceLP(LineF l, PointF p) { return abs(cross(l.p2 - l.p1, p - l.p1)) / (l.p2 - l.p1).magnitude(); } constexpr static double getDistanceSP(SegmentF s, PointF p) { if (dot(s.p2 - s.p1, p - s.p1) < 0.) return (p - s.p1).magnitude(); if (dot(s.p1 - s.p2, p - s.p2) < 0.) return (p - s.p2).magnitude(); return getDistanceLP(s, p); } constexpr static bool intersect(PointF p1, PointF p2, PointF p3, PointF p4) { return (ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0) && (ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0); } constexpr static bool intersect(SegmentF s1, SegmentF s2) { return intersect(s1.p1, s1.p2, s2.p1, s2.p2); } constexpr static bool intersectSL(SegmentF s, LineF l) { return cross(l.p2 - l.p1, s.p1 - l.p1) * cross(l.p2 - l.p1, s.p2 - l.p1) < eps; } constexpr static double getDistance(SegmentF s1, SegmentF s2) { if (intersect(s1, s2)) return 0; return min(min(getDistanceSP(s1, s2.p1), getDistanceSP(s1, s2.p2)), min(getDistanceSP(s2, s1.p1), getDistanceSP(s2, s1.p2))); } constexpr static PointF getCrossPoint(SegmentF s1, SegmentF s2) { VectorF v1 = s2.p2 - s1.p1; VectorF v2 = s2.p1 - s1.p1; VectorF v3 = s1.p2 - s2.p1; double k = (cross(v2, s1.p1) - cross(v2, s2.p1) + cross(v2, v2) * 2 + cross(v3, s1.p1) - cross(v3, s2.p1) + cross(v3, v2) * 2) / (cross(v1, v2) + cross(v1, v3) - cross(v2, v3)); return s1.p1 + v1 * k + v2 * (1 - k); } static double polygon_area_2(const PolygonF& ps) { // 多角形の面積の”2倍”,反時計回りに並んでる必要あり double area = 0; const int n = ps.size(); reps(i, n - 2) { area += cross(ps[i] - ps[0], ps[i + 1] - ps[0]); } return area; } static bool is_convex(const PolygonF& ps) { // 凸多角形かどうか const int n = ps.size(); rep(i, n) { if (cross(ps[(i + 1) % n] - ps[i], ps[(i + 2) % n] - ps[i]) < 0) return false; } return true; } static bool is_parallel(const LineF& l1, const LineF& l2) { // 平行かどうか return abs(cross(l1.p2 - l1.p1, l2.p2 - l2.p1)) < eps; } static int in_concave_polygon(const PointF& p, const PolygonF& G) { // G: 凸とは限らない多角形、反時計回り, O(n) // 0: out, 1: on, 2: in int cnt = 0; rep(i, G.size()) { if (ccw(G[i], G[(i + 1) % G.size()], p) == 0) { return 1; } VectorF v1 = G[i] - p; VectorF v2 = G[(i + 1) % G.size()] - p; if (v1.y > v2.y) { swap(v1, v2); } if (cross(v1, v2) > 0 && v1.y < 0 && v2.y >= 0) { cnt++; } } return (cnt % 2 == 1) ? 2 : 0; } // 凸包を求め、反時計回りで返す static PolygonF convexHull(const PolygonF& polygon, bool strict = true) { auto ps = polygon; sort(all(ps)); ps.erase(unique(all(ps)), ps.end()); const int n = ps.size(); PolygonF qs(n * 2); int k = 0; for (int i = 0; i < n; ++i) { double cr; while (k >= 2 && (cr = cross(qs[k - 1] - qs[k - 2], ps[i] - qs[k - 2]) < -eps || (strict && cr < eps))) k--; qs[k++] = ps[i]; } for (int i = n - 1, t = k + 1; i > 0; --i) { double cr; while (k >= t && (cr = cross(qs[k - 1] - qs[k - 2], ps[i - 1] - qs[k - 2]) < -eps || (strict && cr < eps))) k--; qs[k++] = ps[i - 1]; } qs.resize(k - 1); return qs; } static double convexDiameter(const PolygonF& polygon) { const int n = polygon.size(); int is = 0, js = 0; reps(i, n - 1) { if (polygon[i].y > polygon[is].y) is = i; if (polygon[i].y < polygon[js].y) js = i; } double maxd = (polygon[is] - polygon[js]).sqrMagnitude(); int i, maxi, j, maxj; i = maxi = is; j = maxj = js; do { if (cross(polygon[(i + 1) % n] - polygon[i], polygon[(j + 1) % n] - polygon[j]) >= 0) { j = (j + 1) % n; } else { i = (i + 1) % n; } if ((polygon[i] - polygon[j]).sqrMagnitude() > maxd) { maxd = (polygon[i] - polygon[j]).sqrMagnitude(); maxi = i, maxj = j; } } while (i != is || j != js); return sqrt(maxd); } static PolygonF convexCut(const PolygonF& polygon, const LineF& l) { // 反時計回りに並んだ凸多角形(各内角が180度以下)のpolygonをlによって切断した時の左側(l.p1→p2から見て)の多角形を返す PolygonF res; auto [p1, p2] = l; rep(i, polygon.size()) { PointF a = polygon[i], b = polygon[(i + 1) % polygon.size()]; SegmentF s = {a, b}; if (ccw(p1, p2, a) != -1) res.push_back(a); if (intersectSL(s, l) && !is_parallel(s, l)) { auto cp = getCrossPoint({a, b}, {p1, p2}); if (cp != a && cp != b) res.push_back(cp); } } return res; } static double closestPair(const vector<PointF>& ps) { auto qs = ps; sort(all(qs)); return _closestPair(qs, 0, qs.size()); } // その他 // 凸多角形の内部に入っているか判定 struct ConvexPolygonInclude { using PolygonI = Geometry::PolygonI; using PointI = Geometry::PointI; private: PolygonI polygon; public: ConvexPolygonInclude(const PolygonI& _polygon) : polygon(_polygon) { assert(polygon.size() >= 3); PointI p0 = polygon[0]; sort(polygon.begin() + 1, polygon.end(), [&](const auto& a, const auto& b) { return Geometry::cross(a - p0, b - p0) > 0; }); } int check(const PointI& p) const { // -1 : out, 0 : on, 1 : in int c1, c2; if ((c1 = ccw(polygon[0], polygon[1], p)) == CLOCKWISE || c1 == ONLINE_BACK || c1 == ONLINE_FRONT || (c2 = ccw(polygon[0], polygon.back(), p)) == COUNTER_CLOCKWISE || c2 == ONLINE_BACK || c2 == ONLINE_FRONT) return -1; if (c1 == ON_SEGMENT || c2 == ON_SEGMENT) return 0; auto lb = lower_bound(polygon.begin() + 1, polygon.end(), p, [&](const auto& a, const auto& b) { return Geometry::cross(a - polygon[0], b - polygon[0]) > 0; }); if (lb == polygon.begin() + 1) { return -1; } auto p1 = *(lb - 1); auto p2 = *lb; int c3 = ccw(p1, p2, p); return c3; } }; private: static double _closestPair(vector<PointF>& ps, int l, int r) { const int n = r - l; if (n <= 1) return inf; int m = n / 2; double x = ps[l + m].x; double d = min(_closestPair(ps, l, l + m), _closestPair(ps, l + m, r)); inplace_merge(ps.begin() + l, ps.begin() + l + m, ps.begin() + r, [](const auto& a, const auto& b) { return a.y < b.y; }); vector<PointF> b; rep(i, n) { if (fabs(ps[l + i].x - x) >= d) continue; rrep(j, b.size()) { double dx = ps[l + i].x - b[j].x, dy = ps[l + i].y - b[j].y; if (dy >= d) break; d = min(d, sqrt(dx * dx + dy * dy)); } b.push_back(ps[l + i]); } return d; } }; using lf = long double; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int q; inp(q); ll _xa, _ya, _xb, _yb, _xc, _yc; inp(_xa, _ya, _xb, _yb, _xc, _yc); lf xa = _xa, ya = _ya, xb = _xb, yb = _yb, xc = _xc, yc = _yc; lf xo = ((xa * xa + ya * ya) * (yb - yc) + (xb * xb + yb * yb) * (yc - ya) + (xc * xc + yc * yc) * (ya - yb)) / ((xa - xb) * (yb - yc) - (xb - xc) * (ya - yb)) / 2; lf yo = ((xa * xa + ya * ya) * (xb - xc) + (xb * xb + yb * yb) * (xc - xa) + (xc * xc + yc * yc) * (xa - xb)) / ((ya - yb) * (xb - xc) - (yb - yc) * (xa - xb)) / 2; lf rSq = (xa - xo) * (xa - xo) + (ya - yo) * (ya - yo); if (isnan(double(xo)) || isnan(double(yo)) || isnan(double(rSq))) { xo = 0, yo = 0, rSq = linf; } debug(double(xo), double(yo), double(rSq)); lf ab = (xb - xa) * (xb - xa) + (yb - ya) * (yb - ya); lf ac = (xc - xa) * (xc - xa) + (yc - ya) * (yc - ya); lf bc = (xc - xb) * (xc - xb) + (yc - yb) * (yc - yb); if (ab >= ac && ab >= bc) { lf xxo = (xa + xb) / 2; lf yyo = (ya + yb) / 2; lf rrSq = (xa - xxo) * (xa - xxo) + (ya - yyo) * (ya - yyo); lf oc = (xc - xxo) * (xc - xxo) + (yc - yyo) * (yc - yyo); if (oc <= rrSq && rSq > rrSq) { xo = xxo, yo = yyo, rSq = rrSq; } } if (ac >= ab && ac >= bc) { lf xxo = (xa + xc) / 2; lf yyo = (ya + yc) / 2; lf rrSq = (xa - xxo) * (xa - xxo) + (ya - yyo) * (ya - yyo); lf ob = (xb - xxo) * (xb - xxo) + (yb - yyo) * (yb - yyo); if (ob <= rrSq && rSq > rrSq) { xo = xxo, yo = yyo, rSq = rrSq; } } if (bc >= ab && bc >= ac) { lf xxo = (xb + xc) / 2; lf yyo = (yb + yc) / 2; lf rrSq = (xb - xxo) * (xb - xxo) + (yb - yyo) * (yb - yyo); lf oa = (xa - xxo) * (xa - xxo) + (ya - yyo) * (ya - yyo); if (oa <= rrSq && rSq > rrSq) { xo = xxo, yo = yyo, rSq = rrSq; } } debug(double(xo), double(yo), double(rSq)); rep(i, q) { ll _x, _y; inp(_x, _y); lf x = _x, y = _y; lf dSq = (x - xo) * (x - xo) + (y - yo) * (y - yo); // debug(double(dSq), double(rSq)); if (dSq <= rSq + __float128(1e-15)) { oup("Yes"); } else { oup("No"); } } return 0; }