結果
問題 | No.2620 Sieve of Coins |
ユーザー | 👑 Nachia |
提出日時 | 2024-01-15 01:01:19 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 73 ms / 2,000 ms |
コード長 | 6,024 bytes |
コンパイル時間 | 1,536 ms |
コンパイル使用メモリ | 114,964 KB |
実行使用メモリ | 11,136 KB |
最終ジャッジ日時 | 2024-09-28 02:09:03 |
合計ジャッジ時間 | 4,303 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 5 |
other | AC * 53 |
ソースコード
// 00:32:43 #ifdef NACHIA #define _GLIBCXX_DEBUG #else #define NDEBUG #endif #include <iostream> #include <string> #include <vector> #include <algorithm> #include <utility> #include <queue> #include <array> #include <cmath> #include <cassert> namespace nachia{ namespace prime_sieve_explicit_internal{ std::vector<bool> isprime = { false }; // a[x] := isprime(2x+1) void CalcIsPrime(int z){ if((int)isprime.size() *2+1 < z+1){ int new_z = isprime.size(); while(new_z*2+1 < z+1) new_z *= 2; z = new_z-1; isprime.resize(z+1, true); for(int i=1; i*(i+1)*2<=z; i++) if(isprime[i]){ for(int j=i*(i+1)*2; j<=z; j+=i*2+1) isprime[j] = false; } } } std::vector<int> prime_list = {2}; int prime_list_max = 0; void CalcPrimeList(int z){ while((int)prime_list.size() < z){ if((int)isprime.size() <= prime_list_max + 1) CalcIsPrime(prime_list_max * 2 + 10); for(int p=prime_list_max+1; p<(int)isprime.size(); p++){ if(isprime[p]) prime_list.push_back(p*2+1); } prime_list_max = isprime.size() - 1; } } void CalcPrimeListUntil(int z){ if(prime_list_max < z){ CalcIsPrime(z); for(int p=prime_list_max+1; p<(int)isprime.size(); p++){ if(isprime[p]) prime_list.push_back(p*2+1); } prime_list_max = isprime.size() - 1; } } } bool IsprimeExplicit(int n){ using namespace prime_sieve_explicit_internal; if(n == 2) return true; if(n % 2 == 0) return false; CalcIsPrime(n); return isprime[(n-1)/2]; } int NthPrimeExplicit(int n){ using namespace prime_sieve_explicit_internal; CalcPrimeList(n); return prime_list[n]; } int PrimeCountingExplicit(int n){ using namespace prime_sieve_explicit_internal; if(n < 2) return 0; CalcPrimeListUntil(n); auto res = std::upper_bound(prime_list.begin(), prime_list.end(), n) - prime_list.begin(); return (int)res; } // [l, r) std::vector<bool> SegmentedSieveExplicit(long long l, long long r){ assert(0 <= l); assert(l <= r); long long d = r - l; if(d == 0) return {}; std::vector<bool> res(d, true); for(long long p=2; p*p<=r; p++) if(IsprimeExplicit(p)){ long long il = (l+p-1)/p, ir = (r+p-1)/p; if(il <= p) il = p; for(long long i=il; i<ir; i++) res[i*p-l] = false; } if(l < 2) for(long long p=l; p<2 && p<r; p++) res[l-p] = false; return res; } } // namespace nachia namespace nachia{ template<class Elem> void DivisorZeta(std::vector<Elem>& a){ using namespace prime_sieve_explicit_internal; int n = a.size() - 1; for(int d=2; d<=n; d++) if(IsprimeExplicit(d)) for(int i=1; i*d<=n; i++) a[i*d] += a[i]; } template<class Elem> void DivisorInvZeta(std::vector<Elem>& a){ using namespace prime_sieve_explicit_internal; int n = a.size() - 1; for(int d=2; d<=n; d++) if(IsprimeExplicit(d)) for(int i=n/d; i>=1; i--) a[i] += a[i*d]; } template<class Elem> void DivisorMobius(std::vector<Elem>& a){ using namespace prime_sieve_explicit_internal; int n = a.size() - 1; for(int d=2; d<=n; d++) if(IsprimeExplicit(d)) for(int i=n/d; i>=1; i--) a[i*d] -= a[i]; } template<class Elem> void DivisorInvMobius(std::vector<Elem>& a){ using namespace prime_sieve_explicit_internal; int n = a.size() - 1; for(int d=2; d<=n; d++) if(IsprimeExplicit(d)) for(int i=1; i*d<=n; i++) a[i] -= a[i*d]; } template<class Elem> std::vector<Elem> GcdConvolution(std::vector<Elem> a, std::vector<Elem> b){ assert(a.size() == b.size()); assert(1 <= a.size()); DivisorInvZeta(a); DivisorInvZeta(b); for(int i=1; i<(int)a.size(); i++) a[i] *= b[i]; DivisorInvMobius(a); return a; } template<class Elem> std::vector<Elem> LcmConvolution(std::vector<Elem> a, std::vector<Elem> b){ assert(a.size() == b.size()); assert(1 <= a.size()); DivisorZeta(a); DivisorZeta(b); for(int i=1; i<(int)a.size(); i++) a[i] *= b[i]; DivisorMobius(a); return a; } } using namespace std; using i64 = long long; using u64 = unsigned long long; #define rep(i,n) for(i64 i=0; i<(i64)(n); i++) #define repr(i,n) for(i64 i=(i64)(n)-1; i>=0; i--) const i64 INF = 1001001001001001001; const char* yn(bool x){ return x ? "Yes" : "No"; } template<typename A> void chmin(A& l, const A& r){ if(r < l) l = r; } template<typename A> void chmax(A& l, const A& r){ if(l < r) l = r; } template<typename A> using nega_queue = priority_queue<A,vector<A>,greater<A>>; int main(){ i64 L, N; cin >> L >> N; vector<i64> A(N); rep(i,N) cin >> A[i]; vector<vector<i64>> pow23(1); pow23[0].push_back(1); while(pow23.back()[0] * 3 <= L){ i64 l = pow23.back()[0]; pow23.emplace_back(1); pow23.back()[0] = l * 3; } for(auto& a : pow23) while(a.back() * 2 <= L) a.push_back(a.back() * 2); int H = (int)max(pow23.size(), pow23[0].size()); vector<vector<int>> coins(H, vector<int>(H)); for(i64 a : A){ int p2 = 0; while(a%2 == 0){ p2++; a /= 2; } int p3 = 0; while(a%3 == 0){ p3++; a /= 3; } coins[p3][p2] = 1; } rep(y,H) rep(x,H) if(coins[y][x]){ for(int yy=y; yy<H; yy++) for(int xx=x; xx<H; xx++) if(xx != x || yy != y) coins[yy][xx] ^= 1; } i64 ans = 0; rep(y,H) rep(x,H) if(coins[y][x]) if(y<(int)pow23.size()) if(x<(int)pow23[y].size()){ i64 mp = pow23[y][x]; i64 smallL = L / mp; i64 sz = 1; while((sz+1)*(sz+1) <= smallL) sz++; vector<i64> Q(sz+1); for(i64 i=1; i<=sz; i++) if(i%2 != 0 && i%3 != 0){ Q[i] += smallL / (i * i); Q[i] -= smallL / (i * i) / 2; Q[i] -= smallL / (i * i) / 3; Q[i] += smallL / (i * i) / 6; } nachia::DivisorInvMobius(Q); ans += Q[1]; } cout << ans << endl; return 0; }