結果

問題 No.900 aδδitivee
ユーザー rlangevinrlangevin
提出日時 2024-01-18 12:26:01
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 770 ms / 2,000 ms
コード長 9,194 bytes
コンパイル時間 422 ms
コンパイル使用メモリ 81,700 KB
実行使用メモリ 136,124 KB
最終ジャッジ日時 2024-01-18 12:26:22
合計ジャッジ時間 20,518 ms
ジャッジサーバーID
(参考情報)
judge11 / judge14
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 38 ms
55,596 KB
testcase_01 AC 39 ms
55,596 KB
testcase_02 AC 48 ms
63,588 KB
testcase_03 AC 48 ms
63,624 KB
testcase_04 AC 49 ms
63,624 KB
testcase_05 AC 48 ms
63,592 KB
testcase_06 AC 49 ms
63,592 KB
testcase_07 AC 740 ms
135,724 KB
testcase_08 AC 736 ms
135,768 KB
testcase_09 AC 696 ms
135,716 KB
testcase_10 AC 735 ms
135,212 KB
testcase_11 AC 713 ms
135,476 KB
testcase_12 AC 736 ms
136,032 KB
testcase_13 AC 751 ms
135,676 KB
testcase_14 AC 710 ms
135,384 KB
testcase_15 AC 740 ms
136,124 KB
testcase_16 AC 710 ms
135,360 KB
testcase_17 AC 743 ms
135,832 KB
testcase_18 AC 751 ms
135,888 KB
testcase_19 AC 710 ms
135,704 KB
testcase_20 AC 733 ms
135,360 KB
testcase_21 AC 770 ms
135,816 KB
testcase_22 AC 525 ms
133,500 KB
testcase_23 AC 513 ms
133,384 KB
testcase_24 AC 552 ms
133,512 KB
testcase_25 AC 516 ms
133,492 KB
testcase_26 AC 534 ms
133,380 KB
testcase_27 AC 512 ms
133,372 KB
testcase_28 AC 550 ms
133,388 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
input = sys.stdin.readline

class SegmentTree:
    def __init__(self,
                n,
                identity_e,
                combine_f,
                ):
        self._n = n
        self._size = 1
        while self._size < self._n:
            self._size <<= 1
        self._identity_e = identity_e
        self._combine_f = combine_f
        self._node = [self._identity_e] * (2 * self._size)

    def build(self, array):
        assert len(array) == self._n
        for index, value in enumerate(array, start=self._size):
            self._node[index] = value
        for index in range(self._size - 1, 0, -1):
            self._node[index] = self._combine_f(
                self._node[index << 1 | 0],
                self._node[index << 1 | 1]
            )

    def update(self, index, value):
        i = self._size + index
        self._node[i] = value
        while i > 1:
            i >>= 1
            self._node[i] = self._combine_f(
                self._node[i << 1 | 0],
                self._node[i << 1 | 1]
            )

    def fold(self, L, R):
        L += self._size
        R += self._size
        value_L = self._identity_e
        value_R = self._identity_e
        while L < R:
            if L & 1:
                value_L = self._combine_f(value_L, self._node[L])
                L += 1
            if R & 1:
                R -= 1
                value_R = self._combine_f(self._node[R], value_R)
            L >>= 1
            R >>= 1
        return self._combine_f(value_L, value_R)

    def get(self, p):
        return self._node[p + self._size]

    def max_right(self, l, f):
        assert 0 <= l <= self._n
        assert f(self._identity_e)
        if l == self._n:
            return self._n
        l += self._size
        sm = self._identity_e
        while True:
            while l % 2 == 0:
                l >>= 1
            if not f(self._combine_f(sm, self._node[l])):
                while l < self._size:
                    l <<= 1
                    if f(self._combine_f(sm, self._node[l])):
                        sm = self._combine_f(sm, self._node[l])
                        l += 1
                return l - self._size
            sm = self._combine_f(sm, self._node[l])
            l += 1
            if l & -l == l:
                break
        return self._n

    def min_left(self, r, f):
        assert 0 <= r <= self._n
        assert f(self._identity_e)
        if r == 0:
            return 0
        r += self._size
        sm = self._identity_e
        while True:
            r -= 1
            while r > 1 and r % 2:
                r >>= 1
            if not f(self._combine_f(self._node[r], sm)):
                while r < self._size:
                    r = 2 * r + 1
                    if f(self._combine_f(self._node[r], sm)):
                        sm = self._combine_f(self._node[r], sm)
                        r -= 1
                return r + 1 - self._size
            sm = self._combine_f(self._node[r], sm)
            if r & -r == r:
                break
        return 0

from operator import add
class EulerTour():
    def __init__(self, N):
        self.N = N
        self._in = [0] * N
        self._out = [0] * N
        self.depth = [-1] * N
        self.weight = [0] * N
        self.par = [-1] * N
        self.tour = [-1] * (2 * N)
        self.G = [[] for i in range(N)]
        
    def add_edge(self, u, v, w):
        self.G[u].append((v, w))
        self.G[v].append((u, w))
        
    def build(self, root=0):
        stack = [root]
        self.depth[root] = 0
        for i in range(2 * self.N):
            s = stack.pop()
            if s >= 0:
                stack.append(~s)
                self.tour[i] = s
                self._in[s] = i
                for u, w in self.G[s]:
                    if u == self.par[s]:
                        continue                        
                    self.par[u] = s
                    self.weight[u] = w
                    self.depth[u] = self.depth[s] + 1
                    stack.append(u)
            else:
                s = ~s
                self._out[s] = i
                self.tour[i] = ~s
                
    def get_path(self, u, v):
        d = self.elist.fold(0, self._in[u] + 1) + self.elist.fold(0, self._in[v] + 1)
        lca = self.get_lca(u, v)
        d -= 2 * self.elist.fold(0, self._in[lca] + 1)
        return d
        
    def update(self, u, v, w):
        e = v
        if self.par[u] == v:
            e = u
        self.elist.update(self._in[e], w)
        self.elist.update(self._out[e], -w)
        
    def get_lca(self, u, v):
        if self._in[u] > self._in[v]:
            u, v = v, u
        lca = self.dlist.fold(self._in[u], self._in[v] + 1) % self.N
        return lca
    
    
class LazySegmentTree:
    def __init__(
        self,
        n,
        identity_e_node,
        identity_e_lazy,
        combine_node_f,
        combine_lazy_f,
        reflect_f,
    ):
        self._n = n
        self._size = 1
        self._height = 0
        while self._size < self._n:
            self._size <<= 1
            self._height += 1
        self._identity_e_node = identity_e_node
        self._identity_e_lazy = identity_e_lazy
        self._combine_node_f = combine_node_f
        self._combine_lazy_f = combine_lazy_f
        self._reflect_f = reflect_f
        self._node = [self._identity_e_node] * (2 * self._size)
        self._lazy = [self._identity_e_lazy] * (2 * self._size)

    #遅延データの値を値データに反映させたときの値を返す。
    def _reflect_lazy(self, index):
        return self._reflect_f(self._node[index], self._lazy[index])

    def _propagate_from_top(self, index):
        index += self._size
        for h in range(self._height, 0, -1):
            i = index >> h
            if self._lazy[i] != self._identity_e_lazy:
                self._lazy[i << 1] = self._combine_lazy_f(
                    self._lazy[i << 1], self._lazy[i]
                )
                self._lazy[i << 1 | 1] = self._combine_lazy_f(
                    self._lazy[i << 1 | 1], self._lazy[i]
                )
                self._node[i] = self._reflect_lazy(i)
                self._lazy[i] = self._identity_e_lazy

    def _update_from_bottom(self, index):
        index = (index + self._size) >> 1
        while index:
            self._node[index] = self._combine_node_f(
                self._reflect_lazy(index << 1),
                self._reflect_lazy(index << 1 | 1)
            )
            index >>= 1

    def build(self, array):
        assert len(array) == self._n
        for index, value in enumerate(array, start=self._size):
            self._node[index] = value
        for index in range(self._size - 1, 0, -1):
            self._node[index] = self._combine_node_f(
                self._node[index << 1],
                self._node[index << 1 | 1]    
            )

    # 区間更新 位置[L, R) (0-indexed)を値valueで更新
    def update(self, L, R, value):
        self._propagate_from_top(L)
        self._propagate_from_top(R - 1)
        L_lazy = L + self._size
        R_lazy = R + self._size
        while L_lazy < R_lazy:
            if L_lazy & 1:
                self._lazy[L_lazy] = self._combine_lazy_f(self._lazy[L_lazy], value)
                L_lazy += 1
            if R_lazy & 1:
                R_lazy -= 1
                self._lazy[R_lazy] = self._combine_lazy_f(self._lazy[R_lazy], value)
            L_lazy >>= 1
            R_lazy >>= 1
        self._update_from_bottom(L)
        self._update_from_bottom(R - 1)

    # 区間取得 区間[L, R) (0-indexed)内の要素について
    # L番目から順にcombine_node_fを適用した値を返す。
    def fold(self, L, R):
        self._propagate_from_top(L)
        self._propagate_from_top(R - 1)
        L += self._size
        R += self._size
        value_L = self._identity_e_node
        value_R = self._identity_e_node
        while L < R:
            if L & 1:
                value_L = self._combine_node_f(value_L, self._reflect_lazy(L))
                L += 1
            if R & 1:
                R -= 1
                value_R = self._combine_node_f(self._reflect_lazy(R), value_R)
            L >>= 1
            R >>= 1
        return self._combine_node_f(value_L, value_R)

# 区間加算する場合
def op(x1, x2):
    v1, s1 = x1
    v2, s2 = x2
    return (v1 + v2, s1 + s2)

def reflect(node, lazy):
    return (node[0] + lazy * node[1], node[1])


N = int(input())
T = EulerTour(N)
for i in range(N - 1):
    a, b, w = map(int, input().split())
    T.add_edge(a, b, w)
    
T.build(0)
_in, _out, tour, w = T._in, T._out, T.tour, T.weight
LT = LazySegmentTree(
	2 * N,
	(0, 0),
	0,
	op,
	add,
	reflect
)
L = [(0, 1)]
for i in range(1, 2 * N - 1):
    if tour[i] >= 0:
        L.append((w[tour[i]], 1))
    else:
        L.append((-w[~tour[i]], -1))
L.append((0, -1))
LT.build(L)
Q = int(input())
for i in range(Q):
    q = list(map(int, input().split()))
    if q[0] == 1:
        a, x = q[1:]
        LT.update(_in[a]+1, _out[a], x)
    else:
        b = q[1]
        print(LT.fold(0, _in[b] + 1)[0])
0