結果

問題 No.2613 Sum of Combination
ユーザー Mitarushi
提出日時 2024-01-19 17:12:22
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 2,451 ms / 4,500 ms
コード長 2,932 bytes
コンパイル時間 220 ms
コンパイル使用メモリ 82,176 KB
実行使用メモリ 100,224 KB
最終ジャッジ日時 2024-09-28 03:48:50
合計ジャッジ時間 48,445 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 49
権限があれば一括ダウンロードができます

ソースコード

diff #

MOD = 998244353

def find_primitive_root(n):
    phi = n - 1
    factors = []
    for i in range(2, n):
        if i * i > phi:
            break
        if phi % i == 0:
            factors.append(i)
            while phi % i == 0:
                phi //= i
    if phi > 1:
        factors.append(phi)
    for res in range(1, n):
        ok = True
        for factor in factors:
            if pow(res, (n - 1) // factor, n) == 1:
                ok = False
                break
        if ok:
            return res
    return -1

primitive_root = find_primitive_root(MOD)

def ntt(a):
    n = len(a)
    m = n
    while m > 1:
        mh = m >> 1
        wm = pow(primitive_root, (MOD - 1) // m, MOD)
        w = 1
        for i in range(mh):
            for j in range(i, n, m):
                k = j + mh
                a0 = a[j]
                a1 = a[k]
                a[j] = a0 + a1
                if a[j] >= MOD:
                    a[j] -= MOD
                a[k] = (a0 - a1 + MOD) * w % MOD
            w = w * wm % MOD
        m = mh
    
def intt(a):
    n = len(a)
    m = 2
    while m <= n:
        mh = m >> 1
        wm = pow(primitive_root, MOD - 1 - (MOD - 1) // m, MOD)
        w = 1
        for i in range(mh):
            for j in range(i, n, m):
                k = j + mh
                a0 = a[j]
                a1 = a[k] * w % MOD
                a[j] = a0 + a1
                if a[j] >= MOD:
                    a[j] -= MOD
                a[k] = a0 - a1
                if a[k] < 0:
                    a[k] += MOD
            w = w * wm % MOD
        m <<= 1
    inv = pow(n, MOD - 2, MOD)
    for i in range(n):
        a[i] = a[i] * inv % MOD

def solve():
    def comb(a, b):
        return (index_table_sum[a] - index_table_sum[b] - index_table_sum[a - b] + 2 * (p - 1)) % (p - 1)

    n, p = map(int, input().split())

    q = find_primitive_root(p)
    index_table = [0] * p
    k = 1
    for i in range(p - 1):
        index_table[k] = i
        k = k * q % p
    index_table_sum = [0] * p
    for i in range(1, p):
        index_table_sum[i] = index_table_sum[i - 1] + index_table[i]
        if index_table_sum[i] >= p - 1:
            index_table_sum[i] -= p - 1
    
    len = 1
    while len < (p - 1) * 2:
        len *= 2

    count = [0] * len
    count[0] = 1
    while n > 0:
        m = n % p
        n //= p

        a = [0] * len
        for i in range(m + 1):
            a[comb(m, i)] += 1
        
        ntt(count)
        ntt(a)

        for i in range(len):
            count[i] = count[i] * a[i] % MOD
        
        intt(count)

        for i in range(len - 1, p - 2, -1):
            count[i - p + 1] += count[i]
            if count[i - p + 1] >= MOD:
                count[i - p + 1] -= MOD
            count[i] = 0
    
    ans = 0
    k = 1
    for i in range(p - 1):
        ans = (ans + count[i] * k) % MOD
        k = k * q % p
    
    print(ans)

solve()
0