結果

問題 No.2613 Sum of Combination
ユーザー chineristACchineristAC
提出日時 2024-01-19 21:51:26
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 826 ms / 4,500 ms
コード長 8,188 bytes
コンパイル時間 317 ms
コンパイル使用メモリ 82,444 KB
実行使用メモリ 159,884 KB
最終ジャッジ日時 2024-09-28 04:21:37
合計ジャッジ時間 22,747 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 62 ms
68,756 KB
testcase_01 AC 63 ms
68,984 KB
testcase_02 AC 139 ms
84,612 KB
testcase_03 AC 61 ms
68,644 KB
testcase_04 AC 66 ms
69,076 KB
testcase_05 AC 61 ms
68,536 KB
testcase_06 AC 62 ms
69,320 KB
testcase_07 AC 63 ms
70,296 KB
testcase_08 AC 116 ms
83,096 KB
testcase_09 AC 70 ms
73,700 KB
testcase_10 AC 62 ms
70,620 KB
testcase_11 AC 97 ms
82,612 KB
testcase_12 AC 97 ms
82,648 KB
testcase_13 AC 144 ms
84,492 KB
testcase_14 AC 145 ms
84,772 KB
testcase_15 AC 147 ms
84,024 KB
testcase_16 AC 146 ms
84,620 KB
testcase_17 AC 151 ms
84,704 KB
testcase_18 AC 141 ms
84,228 KB
testcase_19 AC 147 ms
84,892 KB
testcase_20 AC 112 ms
82,612 KB
testcase_21 AC 90 ms
79,952 KB
testcase_22 AC 173 ms
88,308 KB
testcase_23 AC 748 ms
151,104 KB
testcase_24 AC 738 ms
150,460 KB
testcase_25 AC 701 ms
144,612 KB
testcase_26 AC 810 ms
158,760 KB
testcase_27 AC 443 ms
122,972 KB
testcase_28 AC 789 ms
159,008 KB
testcase_29 AC 776 ms
154,840 KB
testcase_30 AC 784 ms
158,976 KB
testcase_31 AC 764 ms
153,212 KB
testcase_32 AC 749 ms
152,424 KB
testcase_33 AC 781 ms
158,180 KB
testcase_34 AC 758 ms
157,864 KB
testcase_35 AC 813 ms
159,884 KB
testcase_36 AC 795 ms
159,368 KB
testcase_37 AC 803 ms
159,356 KB
testcase_38 AC 786 ms
157,496 KB
testcase_39 AC 777 ms
158,380 KB
testcase_40 AC 781 ms
158,208 KB
testcase_41 AC 800 ms
159,084 KB
testcase_42 AC 811 ms
158,476 KB
testcase_43 AC 826 ms
159,744 KB
testcase_44 AC 762 ms
158,012 KB
testcase_45 AC 64 ms
69,752 KB
testcase_46 AC 63 ms
69,968 KB
testcase_47 AC 62 ms
69,764 KB
testcase_48 AC 66 ms
70,752 KB
testcase_49 AC 64 ms
70,576 KB
testcase_50 AC 794 ms
158,080 KB
testcase_51 AC 751 ms
158,152 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
from itertools import permutations
from heapq import heappop,heappush
from collections import deque
import random
import bisect
from math import gcd


input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())

mod = 998244353
omega = pow(3,119,mod)
rev_omega = pow(omega,mod-2,mod)

N = 2*10**5
g1 = [1]*(N+1) # 元テーブル
g2 = [1]*(N+1) #逆元テーブル
inv = [1]*(N+1) #逆元テーブル計算用テーブル

for i in range( 2, N + 1 ):
    g1[i]=( ( g1[i-1] * i ) % mod )
    inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod )
    g2[i]=( (g2[i-1] * inv[i]) % mod )
inv[0]=0

_fft_mod = 998244353
_fft_imag = 911660635
_fft_iimag = 86583718
_fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601,
              842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899)
_fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960,
               354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235)
_fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099,
              183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204)
_fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500,
               771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681)
 
 
def _butterfly(a):
    n = len(a)
    h = (n - 1).bit_length()
    len_ = 0
    while len_ < h:
        if h - len_ == 1:
            p = 1 << (h - len_ - 1)
            rot = 1
            for s in range(1 << len_):
                offset = s << (h - len_)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p] * rot % _fft_mod
                    a[i + offset] = (l + r) % _fft_mod
                    a[i + offset + p] = (l - r) % _fft_mod
                if s + 1 != (1 << len_):
                    rot *= _fft_rate2[(~s & -~s).bit_length() - 1]
                    rot %= _fft_mod
            len_ += 1
        else:
            p = 1 << (h - len_ - 2)
            rot = 1
            for s in range(1 << len_):
                rot2 = rot * rot % _fft_mod
                rot3 = rot2 * rot % _fft_mod
                offset = s << (h - len_)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p] * rot
                    a2 = a[i + offset + p * 2] * rot2
                    a3 = a[i + offset + p * 3] * rot3
                    a1na3imag = (a1 - a3) % _fft_mod * _fft_imag
                    a[i + offset] = (a0 + a2 + a1 + a3) % _fft_mod
                    a[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_mod
                    a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_mod
                    a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_mod
                if s + 1 != (1 << len_):
                    rot *= _fft_rate3[(~s & -~s).bit_length() - 1]
                    rot %= _fft_mod
            len_ += 2
 
 
def _butterfly_inv(a):
    n = len(a)
    h = (n - 1).bit_length()
    len_ = h
    while len_:
        if len_ == 1:
            p = 1 << (h - len_)
            irot = 1
            for s in range(1 << (len_ - 1)):
                offset = s << (h - len_ + 1)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p]
                    a[i + offset] = (l + r) % _fft_mod
                    a[i + offset + p] = (l - r) * irot % _fft_mod
                if s + 1 != (1 << (len_ - 1)):
                    irot *= _fft_irate2[(~s & -~s).bit_length() - 1]
                    irot %= _fft_mod
            len_ -= 1
        else:
            p = 1 << (h - len_)
            irot = 1
            for s in range(1 << (len_ - 2)):
                irot2 = irot * irot % _fft_mod
                irot3 = irot2 * irot % _fft_mod
                offset = s << (h - len_ + 2)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p]
                    a2 = a[i + offset + p * 2]
                    a3 = a[i + offset + p * 3]
                    a2na3iimag = (a2 - a3) * _fft_iimag % _fft_mod
                    a[i + offset] = (a0 + a1 + a2 + a3) % _fft_mod
                    a[i + offset + p] = (a0 - a1 +
                                         a2na3iimag) * irot % _fft_mod
                    a[i + offset + p * 2] = (a0 + a1 -
                                             a2 - a3) * irot2 % _fft_mod
                    a[i + offset + p * 3] = (a0 - a1 -
                                             a2na3iimag) * irot3 % _fft_mod
                if s + 1 != (1 << (len_ - 1)):
                    irot *= _fft_irate3[(~s & -~s).bit_length() - 1]
                    irot %= _fft_mod
            len_ -= 2
 
 
def _convolution_naive(a, b):
    n = len(a)
    m = len(b)
    ans = [0] * (n + m - 1)
    if n < m:
        for j in range(m):
            for i in range(n):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
    else:
        for i in range(n):
            for j in range(m):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
    return ans
 
 
def _convolution_fft(a, b):
    a = a.copy()
    b = b.copy()
    n = len(a)
    m = len(b)
    z = 1 << (n + m - 2).bit_length()
    a += [0] * (z - n)
    _butterfly(a)
    b += [0] * (z - m)
    _butterfly(b)
    for i in range(z):
        a[i] = a[i] * b[i] % _fft_mod
    _butterfly_inv(a)
    a = a[:n + m - 1]
    iz = pow(z, _fft_mod - 2, _fft_mod)
    for i in range(n + m - 1):
        a[i] = a[i] * iz % _fft_mod
    return a
 
 
def _convolution_square(a):
    a = a.copy()
    n = len(a)
    z = 1 << (2 * n - 2).bit_length()
    a += [0] * (z - n)
    _butterfly(a)
    for i in range(z):
        a[i] = a[i] * a[i] % _fft_mod
    _butterfly_inv(a)
    a = a[:2 * n - 1]
    iz = pow(z, _fft_mod - 2, _fft_mod)
    for i in range(2 * n - 1):
        a[i] = a[i] * iz % _fft_mod
    return a
 
 
def convolution(a, b):
    """It calculates (+, x) convolution in mod 998244353. 
    Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1], 
    it calculates the array c of length n + m - 1, defined by
 
    >   c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353.
 
    It returns an empty list if at least one of a and b are empty.
 
    Constraints
    -----------
 
    >   len(a) + len(b) <= 8388609
 
    Complexity
    ----------
 
    >   O(n log n), where n = len(a) + len(b).
    """
    n = len(a)
    m = len(b)
    if n == 0 or m == 0:
        return []
    if min(n, m) <= 0:
        return _convolution_naive(a, b)
    if a is b:
        return _convolution_square(a)
    return _convolution_fft(a, b)

def find_primitive_root(P):
    while True:
        g = random.randint(1,P-1)
        tmp = [0] * P
        tmp[1] = True
        a = 1
        while tmp[(a*g) % P] == 0:
            tmp[(a * g) % P] = 1
            a = (a * g) % P
        if sum(tmp) == P-1:
            return g

N,P = mi()

fact = [1] * (P)
inv = [1] * P
inv[0] = 0
for i in range(2,P):
    fact[i] = i * fact[i-1] % P
    inv[i] = (-inv[P % i]) * (P//i) % P
ifact = [inv[fact[i]] for i in range(P)]

g = find_primitive_root(P)
log_g = [-1] * P
for i in range(P-1):
    log_g[pow(g,i,P)] = i

f = [0] * (P-1)
f[0] = 1
while N:
    n = N % P
    tmp = [0] * (P-1)
    for k in range(n+1):
        val = fact[n] * (ifact[k] * ifact[n-k] % P) % P
        tmp[log_g[val]] += 1
    f = convolution(f,tmp)
    for i in range(P-1,len(f)):
        f[i % (P-1)] += f[i]
        f[i % (P-1)] %= mod
    f = f[:P-1]
    N //= P

res = 0
for i in range(P-1):
    res += pow(g,i,P) * f[i] % mod
    res %= mod

print(res)
    


0