結果
問題 | No.2613 Sum of Combination |
ユーザー | chineristAC |
提出日時 | 2024-01-19 21:51:26 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 826 ms / 4,500 ms |
コード長 | 8,188 bytes |
コンパイル時間 | 317 ms |
コンパイル使用メモリ | 82,444 KB |
実行使用メモリ | 159,884 KB |
最終ジャッジ日時 | 2024-09-28 04:21:37 |
合計ジャッジ時間 | 22,747 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 62 ms
68,756 KB |
testcase_01 | AC | 63 ms
68,984 KB |
testcase_02 | AC | 139 ms
84,612 KB |
testcase_03 | AC | 61 ms
68,644 KB |
testcase_04 | AC | 66 ms
69,076 KB |
testcase_05 | AC | 61 ms
68,536 KB |
testcase_06 | AC | 62 ms
69,320 KB |
testcase_07 | AC | 63 ms
70,296 KB |
testcase_08 | AC | 116 ms
83,096 KB |
testcase_09 | AC | 70 ms
73,700 KB |
testcase_10 | AC | 62 ms
70,620 KB |
testcase_11 | AC | 97 ms
82,612 KB |
testcase_12 | AC | 97 ms
82,648 KB |
testcase_13 | AC | 144 ms
84,492 KB |
testcase_14 | AC | 145 ms
84,772 KB |
testcase_15 | AC | 147 ms
84,024 KB |
testcase_16 | AC | 146 ms
84,620 KB |
testcase_17 | AC | 151 ms
84,704 KB |
testcase_18 | AC | 141 ms
84,228 KB |
testcase_19 | AC | 147 ms
84,892 KB |
testcase_20 | AC | 112 ms
82,612 KB |
testcase_21 | AC | 90 ms
79,952 KB |
testcase_22 | AC | 173 ms
88,308 KB |
testcase_23 | AC | 748 ms
151,104 KB |
testcase_24 | AC | 738 ms
150,460 KB |
testcase_25 | AC | 701 ms
144,612 KB |
testcase_26 | AC | 810 ms
158,760 KB |
testcase_27 | AC | 443 ms
122,972 KB |
testcase_28 | AC | 789 ms
159,008 KB |
testcase_29 | AC | 776 ms
154,840 KB |
testcase_30 | AC | 784 ms
158,976 KB |
testcase_31 | AC | 764 ms
153,212 KB |
testcase_32 | AC | 749 ms
152,424 KB |
testcase_33 | AC | 781 ms
158,180 KB |
testcase_34 | AC | 758 ms
157,864 KB |
testcase_35 | AC | 813 ms
159,884 KB |
testcase_36 | AC | 795 ms
159,368 KB |
testcase_37 | AC | 803 ms
159,356 KB |
testcase_38 | AC | 786 ms
157,496 KB |
testcase_39 | AC | 777 ms
158,380 KB |
testcase_40 | AC | 781 ms
158,208 KB |
testcase_41 | AC | 800 ms
159,084 KB |
testcase_42 | AC | 811 ms
158,476 KB |
testcase_43 | AC | 826 ms
159,744 KB |
testcase_44 | AC | 762 ms
158,012 KB |
testcase_45 | AC | 64 ms
69,752 KB |
testcase_46 | AC | 63 ms
69,968 KB |
testcase_47 | AC | 62 ms
69,764 KB |
testcase_48 | AC | 66 ms
70,752 KB |
testcase_49 | AC | 64 ms
70,576 KB |
testcase_50 | AC | 794 ms
158,080 KB |
testcase_51 | AC | 751 ms
158,152 KB |
ソースコード
import sys from itertools import permutations from heapq import heappop,heappush from collections import deque import random import bisect from math import gcd input = lambda :sys.stdin.readline().rstrip() mi = lambda :map(int,input().split()) li = lambda :list(mi()) mod = 998244353 omega = pow(3,119,mod) rev_omega = pow(omega,mod-2,mod) N = 2*10**5 g1 = [1]*(N+1) # 元テーブル g2 = [1]*(N+1) #逆元テーブル inv = [1]*(N+1) #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1[i]=( ( g1[i-1] * i ) % mod ) inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod ) g2[i]=( (g2[i-1] * inv[i]) % mod ) inv[0]=0 _fft_mod = 998244353 _fft_imag = 911660635 _fft_iimag = 86583718 _fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899) _fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235) _fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204) _fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681) def _butterfly(a): n = len(a) h = (n - 1).bit_length() len_ = 0 while len_ < h: if h - len_ == 1: p = 1 << (h - len_ - 1) rot = 1 for s in range(1 << len_): offset = s << (h - len_) for i in range(p): l = a[i + offset] r = a[i + offset + p] * rot % _fft_mod a[i + offset] = (l + r) % _fft_mod a[i + offset + p] = (l - r) % _fft_mod if s + 1 != (1 << len_): rot *= _fft_rate2[(~s & -~s).bit_length() - 1] rot %= _fft_mod len_ += 1 else: p = 1 << (h - len_ - 2) rot = 1 for s in range(1 << len_): rot2 = rot * rot % _fft_mod rot3 = rot2 * rot % _fft_mod offset = s << (h - len_) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] * rot a2 = a[i + offset + p * 2] * rot2 a3 = a[i + offset + p * 3] * rot3 a1na3imag = (a1 - a3) % _fft_mod * _fft_imag a[i + offset] = (a0 + a2 + a1 + a3) % _fft_mod a[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_mod a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_mod a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_mod if s + 1 != (1 << len_): rot *= _fft_rate3[(~s & -~s).bit_length() - 1] rot %= _fft_mod len_ += 2 def _butterfly_inv(a): n = len(a) h = (n - 1).bit_length() len_ = h while len_: if len_ == 1: p = 1 << (h - len_) irot = 1 for s in range(1 << (len_ - 1)): offset = s << (h - len_ + 1) for i in range(p): l = a[i + offset] r = a[i + offset + p] a[i + offset] = (l + r) % _fft_mod a[i + offset + p] = (l - r) * irot % _fft_mod if s + 1 != (1 << (len_ - 1)): irot *= _fft_irate2[(~s & -~s).bit_length() - 1] irot %= _fft_mod len_ -= 1 else: p = 1 << (h - len_) irot = 1 for s in range(1 << (len_ - 2)): irot2 = irot * irot % _fft_mod irot3 = irot2 * irot % _fft_mod offset = s << (h - len_ + 2) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] a2 = a[i + offset + p * 2] a3 = a[i + offset + p * 3] a2na3iimag = (a2 - a3) * _fft_iimag % _fft_mod a[i + offset] = (a0 + a1 + a2 + a3) % _fft_mod a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % _fft_mod a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % _fft_mod a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % _fft_mod if s + 1 != (1 << (len_ - 1)): irot *= _fft_irate3[(~s & -~s).bit_length() - 1] irot %= _fft_mod len_ -= 2 def _convolution_naive(a, b): n = len(a) m = len(b) ans = [0] * (n + m - 1) if n < m: for j in range(m): for i in range(n): ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod else: for i in range(n): for j in range(m): ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod return ans def _convolution_fft(a, b): a = a.copy() b = b.copy() n = len(a) m = len(b) z = 1 << (n + m - 2).bit_length() a += [0] * (z - n) _butterfly(a) b += [0] * (z - m) _butterfly(b) for i in range(z): a[i] = a[i] * b[i] % _fft_mod _butterfly_inv(a) a = a[:n + m - 1] iz = pow(z, _fft_mod - 2, _fft_mod) for i in range(n + m - 1): a[i] = a[i] * iz % _fft_mod return a def _convolution_square(a): a = a.copy() n = len(a) z = 1 << (2 * n - 2).bit_length() a += [0] * (z - n) _butterfly(a) for i in range(z): a[i] = a[i] * a[i] % _fft_mod _butterfly_inv(a) a = a[:2 * n - 1] iz = pow(z, _fft_mod - 2, _fft_mod) for i in range(2 * n - 1): a[i] = a[i] * iz % _fft_mod return a def convolution(a, b): """It calculates (+, x) convolution in mod 998244353. Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1], it calculates the array c of length n + m - 1, defined by > c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353. It returns an empty list if at least one of a and b are empty. Constraints ----------- > len(a) + len(b) <= 8388609 Complexity ---------- > O(n log n), where n = len(a) + len(b). """ n = len(a) m = len(b) if n == 0 or m == 0: return [] if min(n, m) <= 0: return _convolution_naive(a, b) if a is b: return _convolution_square(a) return _convolution_fft(a, b) def find_primitive_root(P): while True: g = random.randint(1,P-1) tmp = [0] * P tmp[1] = True a = 1 while tmp[(a*g) % P] == 0: tmp[(a * g) % P] = 1 a = (a * g) % P if sum(tmp) == P-1: return g N,P = mi() fact = [1] * (P) inv = [1] * P inv[0] = 0 for i in range(2,P): fact[i] = i * fact[i-1] % P inv[i] = (-inv[P % i]) * (P//i) % P ifact = [inv[fact[i]] for i in range(P)] g = find_primitive_root(P) log_g = [-1] * P for i in range(P-1): log_g[pow(g,i,P)] = i f = [0] * (P-1) f[0] = 1 while N: n = N % P tmp = [0] * (P-1) for k in range(n+1): val = fact[n] * (ifact[k] * ifact[n-k] % P) % P tmp[log_g[val]] += 1 f = convolution(f,tmp) for i in range(P-1,len(f)): f[i % (P-1)] += f[i] f[i % (P-1)] %= mod f = f[:P-1] N //= P res = 0 for i in range(P-1): res += pow(g,i,P) * f[i] % mod res %= mod print(res)