結果
問題 | No.2609 Decreasing GCDs |
ユーザー | kaikey |
提出日時 | 2024-01-19 22:08:50 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 1,000 ms |
コード長 | 4,803 bytes |
コンパイル時間 | 2,556 ms |
コンパイル使用メモリ | 215,288 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-28 04:32:13 |
合計ジャッジ時間 | 3,072 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 1 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 1 ms
5,376 KB |
testcase_17 | AC | 1 ms
5,376 KB |
testcase_18 | AC | 1 ms
5,376 KB |
testcase_19 | AC | 1 ms
5,376 KB |
testcase_20 | AC | 1 ms
5,376 KB |
testcase_21 | AC | 1 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
ソースコード
#include "bits/stdc++.h" #include <random> #include <chrono> #define ALL(x) (x).begin(), (x).end() #define RALL(x) (x).rbegin(), (x).rend() #define SZ(x) ((lint)(x).size()) #define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i) #define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) #define endk '\n' using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef long double ld; typedef pair<lint, lint> plint; typedef pair<ld, ld> pld; struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(30); }; } fast_ios_; template<class T> auto add = [](T a, T b) -> T { return a + b; }; template<class T> auto mul = [](T a, T b) -> T { return a * b; }; template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); }; template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); }; template<class T> using V = vector<T>; using Vl = V<lint>; using VVl = V<Vl>; using VVVl = V<V<Vl>>; template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) { for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : ""); return os; } template< typename T >istream& operator>>(istream& is, vector< T >& v) { for (T& in : v) is >> in; return is; } template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } template <class T> T div_floor(T a, T b) { if (b < 0) a *= -1, b *= -1; return a >= 0 ? a / b : (a + 1) / b - 1; } template <class T> T div_ceil(T a, T b) { if (b < 0) a *= -1, b *= -1; return a > 0 ? (a - 1) / b + 1 : a / b; } template <class F> struct rec { F f; rec(F&& f_) : f(std::forward<F>(f_)) {} template <class... Args> auto operator()(Args &&... args) const { return f(*this, std::forward<Args>(args)...); } }; lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); } lint digit(lint a) { return (lint)log10(a); } lint e_dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); } lint m_dist(plint a, plint b) { return abs(a.first - b.first) + abs(a.second - b.second); } bool check_overflow(lint a, lint b, lint limit) { if (b == 0) return false; return a > limit / b; } // a * b > c => true void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); } const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 2e18; lint dx[8] = { 0, 1, 0, -1, 1, -1, 1, -1 }, dy[8] = { 1, 0, -1, 0, -1, -1, 1, 1 }; bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; } struct Edge { lint from, to; lint cost; Edge() { } Edge(lint u, lint v, lint c) { cost = c; from = u; to = v; } bool operator<(const Edge& e) const { return cost < e.cost; } }; struct WeightedEdge { lint to, _f; lint cost; WeightedEdge(lint v, lint f, lint c) { to = v; _f = f; cost = c; } bool operator<(const WeightedEdge& e) const { return cost < e.cost; } }; using WeightedGraph = V<V<WeightedEdge>>; typedef pair<plint, lint> tlint; typedef pair<ld, ld> pld; typedef pair<plint, plint> qlint; typedef pair<Edge, lint> pEd; typedef pair<plint, V<plint>> vVl; typedef pair<string, string> pstr; typedef pair<ld, lint> pint; typedef pair<lint, set<pint>> pset; typedef pair<pair<plint, pair<Vl, Vl>>, string> states; map< int64_t, int > prime_factor(int64_t n) { map< int64_t, int > ret; for (int64_t i = 2; i * i <= n; i++) { while (n % i == 0) { ret[i]++; n /= i; } } if (n != 1) ret[n] = 1; return ret; } void solve() { lint _N, N = 25; cin >> _N; Vl primes; REP(i, 100) { if (SZ(primes) >= N) break; auto mp = prime_factor(i + 2); if (SZ(mp) == 1 && mp[i + 2] == 1) primes.push_back(i + 2); } reverse(ALL(primes)); Vl ans; ans.push_back(primes[0]); lint prv = INF; REP(i, N - 1) { lint nxt = primes[i] * primes[i + 1], cnt = 1; while (prv <= gcd(ans.back(), (div_floor(ans.back(), nxt) + cnt) * nxt)) cnt++; prv = gcd(ans.back(), (div_floor(ans.back(), nxt) + cnt) * nxt); ans.push_back((div_floor(ans.back(), nxt) + cnt) * nxt); } while (SZ(ans) > _N) ans.pop_back(); cout << ans << endk; } int main() { lint T = 1; //cin >> T; while (T--) solve(); }