結果
問題 | No.2611 Count 01 |
ユーザー | chineristAC |
提出日時 | 2024-01-19 22:28:07 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,242 ms / 6,000 ms |
コード長 | 10,005 bytes |
コンパイル時間 | 151 ms |
コンパイル使用メモリ | 82,296 KB |
実行使用メモリ | 203,564 KB |
最終ジャッジ日時 | 2024-09-28 04:45:54 |
合計ジャッジ時間 | 26,145 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 64 ms
69,120 KB |
testcase_01 | AC | 70 ms
68,992 KB |
testcase_02 | AC | 64 ms
68,992 KB |
testcase_03 | AC | 1,193 ms
203,048 KB |
testcase_04 | AC | 1,115 ms
201,944 KB |
testcase_05 | AC | 1,122 ms
202,476 KB |
testcase_06 | AC | 1,179 ms
201,900 KB |
testcase_07 | AC | 1,197 ms
202,656 KB |
testcase_08 | AC | 1,170 ms
202,788 KB |
testcase_09 | AC | 1,118 ms
200,156 KB |
testcase_10 | AC | 1,159 ms
202,020 KB |
testcase_11 | AC | 1,242 ms
202,920 KB |
testcase_12 | AC | 1,191 ms
202,024 KB |
testcase_13 | AC | 1,238 ms
200,040 KB |
testcase_14 | AC | 1,223 ms
202,852 KB |
testcase_15 | AC | 1,209 ms
203,564 KB |
testcase_16 | AC | 1,167 ms
202,140 KB |
testcase_17 | AC | 1,115 ms
202,804 KB |
testcase_18 | AC | 1,139 ms
202,164 KB |
testcase_19 | AC | 1,161 ms
199,276 KB |
testcase_20 | AC | 1,189 ms
203,032 KB |
testcase_21 | AC | 1,145 ms
203,048 KB |
testcase_22 | AC | 1,148 ms
203,236 KB |
ソースコード
import sys from itertools import permutations from heapq import heappop,heappush from collections import deque import random import bisect from math import gcd input = lambda :sys.stdin.readline().rstrip() mi = lambda :map(int,input().split()) li = lambda :list(mi()) mod = 998244353 omega = pow(3,119,mod) rev_omega = pow(omega,mod-2,mod) N = 2*10**5 g1 = [1]*(N+1) # 元テーブル g2 = [1]*(N+1) #逆元テーブル inv = [1]*(N+1) #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1[i]=( ( g1[i-1] * i ) % mod ) inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod ) g2[i]=( (g2[i-1] * inv[i]) % mod ) inv[0]=0 _fft_mod = 998244353 _fft_imag = 911660635 _fft_iimag = 86583718 _fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899) _fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235) _fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099, 183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204) _fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500, 771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681) def _butterfly(a): n = len(a) h = (n - 1).bit_length() len_ = 0 while len_ < h: if h - len_ == 1: p = 1 << (h - len_ - 1) rot = 1 for s in range(1 << len_): offset = s << (h - len_) for i in range(p): l = a[i + offset] r = a[i + offset + p] * rot % _fft_mod a[i + offset] = (l + r) % _fft_mod a[i + offset + p] = (l - r) % _fft_mod if s + 1 != (1 << len_): rot *= _fft_rate2[(~s & -~s).bit_length() - 1] rot %= _fft_mod len_ += 1 else: p = 1 << (h - len_ - 2) rot = 1 for s in range(1 << len_): rot2 = rot * rot % _fft_mod rot3 = rot2 * rot % _fft_mod offset = s << (h - len_) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] * rot a2 = a[i + offset + p * 2] * rot2 a3 = a[i + offset + p * 3] * rot3 a1na3imag = (a1 - a3) % _fft_mod * _fft_imag a[i + offset] = (a0 + a2 + a1 + a3) % _fft_mod a[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_mod a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_mod a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_mod if s + 1 != (1 << len_): rot *= _fft_rate3[(~s & -~s).bit_length() - 1] rot %= _fft_mod len_ += 2 def _butterfly_inv(a): n = len(a) h = (n - 1).bit_length() len_ = h while len_: if len_ == 1: p = 1 << (h - len_) irot = 1 for s in range(1 << (len_ - 1)): offset = s << (h - len_ + 1) for i in range(p): l = a[i + offset] r = a[i + offset + p] a[i + offset] = (l + r) % _fft_mod a[i + offset + p] = (l - r) * irot % _fft_mod if s + 1 != (1 << (len_ - 1)): irot *= _fft_irate2[(~s & -~s).bit_length() - 1] irot %= _fft_mod len_ -= 1 else: p = 1 << (h - len_) irot = 1 for s in range(1 << (len_ - 2)): irot2 = irot * irot % _fft_mod irot3 = irot2 * irot % _fft_mod offset = s << (h - len_ + 2) for i in range(p): a0 = a[i + offset] a1 = a[i + offset + p] a2 = a[i + offset + p * 2] a3 = a[i + offset + p * 3] a2na3iimag = (a2 - a3) * _fft_iimag % _fft_mod a[i + offset] = (a0 + a1 + a2 + a3) % _fft_mod a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % _fft_mod a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % _fft_mod a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % _fft_mod if s + 1 != (1 << (len_ - 1)): irot *= _fft_irate3[(~s & -~s).bit_length() - 1] irot %= _fft_mod len_ -= 2 def _convolution_naive(a, b): n = len(a) m = len(b) ans = [0] * (n + m - 1) if n < m: for j in range(m): for i in range(n): ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod else: for i in range(n): for j in range(m): ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod return ans def _convolution_fft(a, b): a = a.copy() b = b.copy() n = len(a) m = len(b) z = 1 << (n + m - 2).bit_length() a += [0] * (z - n) _butterfly(a) b += [0] * (z - m) _butterfly(b) for i in range(z): a[i] = a[i] * b[i] % _fft_mod _butterfly_inv(a) a = a[:n + m - 1] iz = pow(z, _fft_mod - 2, _fft_mod) for i in range(n + m - 1): a[i] = a[i] * iz % _fft_mod return a def _convolution_square(a): a = a.copy() n = len(a) z = 1 << (2 * n - 2).bit_length() a += [0] * (z - n) _butterfly(a) for i in range(z): a[i] = a[i] * a[i] % _fft_mod _butterfly_inv(a) a = a[:2 * n - 1] iz = pow(z, _fft_mod - 2, _fft_mod) for i in range(2 * n - 1): a[i] = a[i] * iz % _fft_mod return a def convolution(a, b): """It calculates (+, x) convolution in mod 998244353. Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1], it calculates the array c of length n + m - 1, defined by > c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353. It returns an empty list if at least one of a and b are empty. Constraints ----------- > len(a) + len(b) <= 8388609 Complexity ---------- > O(n log n), where n = len(a) + len(b). """ n = len(a) m = len(b) if n == 0 or m == 0: return [] if min(n, m) <= 0: return _convolution_naive(a, b) if a is b: return _convolution_square(a) return _convolution_fft(a, b) class SegmentTree: def __init__(self, init_val, segfunc, ide_ele): n = len(init_val) self.segfunc = segfunc self.ide_ele = ide_ele self.num = 1 << (n - 1).bit_length() self.tree = [ide_ele] * 2 * self.num self.size = n for i in range(n): self.tree[self.num + i] = init_val[i] for i in range(self.num - 1, 0, -1): self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1]) def update(self, k, x): k += self.num self.tree[k] = x while k > 1: k >>= 1 self.tree[k] = self.segfunc(self.tree[2*k], self.tree[2*k+1]) def query(self, l, r): if r==self.size: r = self.num res = self.ide_ele l += self.num r += self.num right = [] while l < r: if l & 1: res = self.segfunc(res, self.tree[l]) l += 1 if r & 1: right.append(self.tree[r-1]) l >>= 1 r >>= 1 for e in right[::-1]: res = self.segfunc(res,e) return res e = (-1,-1,-1,-1,-1) def merge(x,y): #print(x,y) """ 0の個数、1の個数、0のindex_sum,1のindex_sum,01の個数の積の右累積和,01の個数の積の左累積和,これまでの和 """ if x == e: return y if y == e: return x zero = x[0] + y[0] one = x[1] + y[1] zero_index_sum = (x[2] + y[2] + y[0] * (x[0] + x[1])) % mod one_index_sum = (x[3] + y[3] + y[1] * (x[0] + x[1])) % mod right_cum = y[4] + x[4] + y[0] * (y[1] * (x[0] + x[1]) % mod) % mod + y[1] * x[2] % mod + y[0] * x[3] % mod right_cum %= mod left_cum = x[5] + y[5] + (x[0] * x[1] % mod) * (y[0] + y[1]) % mod + x[0] * ((y[0]+y[1]+1) * y[1] % mod - y[3]) % mod + x[1] * ((y[0]+y[1]+1) * y[0] % mod - y[2]) % mod left_cum %= mod f_val = x[6] + y[6] + x[2] * ((y[0]+y[1]+1) * y[1] % mod - y[3]) % mod + x[3] * ((y[0]+y[1]+1) * y[0] % mod - y[2]) % mod f_val %= mod f_val += (x[0] + x[1]) * y[5] % mod + (y[0] + y[1]) * x[4] % mod f_val %= mod return (zero,one,zero_index_sum,one_index_sum,right_cum,left_cum,f_val) N,Q = mi() S = input() S = [s for s in S] init = [] for s in S: if s == "0": init.append((1,0,1,0,0,0,0)) else: init.append((0,1,0,1,0,0,0)) seg = SegmentTree(init,merge,e) res = [] for _ in range(Q): t,*query = mi() if t == 1: i = query[0] i -= 1 if S[i] == "0": seg.update(i,(0,1,0,1,0,0,0)) S[i] = "1" else: seg.update(i,(1,0,1,0,0,0,0)) S[i] = "0" else: l,r = query l,r = l-1,r-1 res.append(seg.query(l,r+1)[6]) print(*res,sep="\n")