結果

問題 No.2611 Count 01
ユーザー chineristACchineristAC
提出日時 2024-01-19 22:28:07
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,242 ms / 6,000 ms
コード長 10,005 bytes
コンパイル時間 151 ms
コンパイル使用メモリ 82,296 KB
実行使用メモリ 203,564 KB
最終ジャッジ日時 2024-09-28 04:45:54
合計ジャッジ時間 26,145 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 64 ms
69,120 KB
testcase_01 AC 70 ms
68,992 KB
testcase_02 AC 64 ms
68,992 KB
testcase_03 AC 1,193 ms
203,048 KB
testcase_04 AC 1,115 ms
201,944 KB
testcase_05 AC 1,122 ms
202,476 KB
testcase_06 AC 1,179 ms
201,900 KB
testcase_07 AC 1,197 ms
202,656 KB
testcase_08 AC 1,170 ms
202,788 KB
testcase_09 AC 1,118 ms
200,156 KB
testcase_10 AC 1,159 ms
202,020 KB
testcase_11 AC 1,242 ms
202,920 KB
testcase_12 AC 1,191 ms
202,024 KB
testcase_13 AC 1,238 ms
200,040 KB
testcase_14 AC 1,223 ms
202,852 KB
testcase_15 AC 1,209 ms
203,564 KB
testcase_16 AC 1,167 ms
202,140 KB
testcase_17 AC 1,115 ms
202,804 KB
testcase_18 AC 1,139 ms
202,164 KB
testcase_19 AC 1,161 ms
199,276 KB
testcase_20 AC 1,189 ms
203,032 KB
testcase_21 AC 1,145 ms
203,048 KB
testcase_22 AC 1,148 ms
203,236 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
from itertools import permutations
from heapq import heappop,heappush
from collections import deque
import random
import bisect
from math import gcd


input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())

mod = 998244353
omega = pow(3,119,mod)
rev_omega = pow(omega,mod-2,mod)

N = 2*10**5
g1 = [1]*(N+1) # 元テーブル
g2 = [1]*(N+1) #逆元テーブル
inv = [1]*(N+1) #逆元テーブル計算用テーブル

for i in range( 2, N + 1 ):
    g1[i]=( ( g1[i-1] * i ) % mod )
    inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod )
    g2[i]=( (g2[i-1] * inv[i]) % mod )
inv[0]=0

_fft_mod = 998244353
_fft_imag = 911660635
_fft_iimag = 86583718
_fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601,
              842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899)
_fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960,
               354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235)
_fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099,
              183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204)
_fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500,
               771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681)
 
 
def _butterfly(a):
    n = len(a)
    h = (n - 1).bit_length()
    len_ = 0
    while len_ < h:
        if h - len_ == 1:
            p = 1 << (h - len_ - 1)
            rot = 1
            for s in range(1 << len_):
                offset = s << (h - len_)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p] * rot % _fft_mod
                    a[i + offset] = (l + r) % _fft_mod
                    a[i + offset + p] = (l - r) % _fft_mod
                if s + 1 != (1 << len_):
                    rot *= _fft_rate2[(~s & -~s).bit_length() - 1]
                    rot %= _fft_mod
            len_ += 1
        else:
            p = 1 << (h - len_ - 2)
            rot = 1
            for s in range(1 << len_):
                rot2 = rot * rot % _fft_mod
                rot3 = rot2 * rot % _fft_mod
                offset = s << (h - len_)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p] * rot
                    a2 = a[i + offset + p * 2] * rot2
                    a3 = a[i + offset + p * 3] * rot3
                    a1na3imag = (a1 - a3) % _fft_mod * _fft_imag
                    a[i + offset] = (a0 + a2 + a1 + a3) % _fft_mod
                    a[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_mod
                    a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_mod
                    a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_mod
                if s + 1 != (1 << len_):
                    rot *= _fft_rate3[(~s & -~s).bit_length() - 1]
                    rot %= _fft_mod
            len_ += 2
 
 
def _butterfly_inv(a):
    n = len(a)
    h = (n - 1).bit_length()
    len_ = h
    while len_:
        if len_ == 1:
            p = 1 << (h - len_)
            irot = 1
            for s in range(1 << (len_ - 1)):
                offset = s << (h - len_ + 1)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p]
                    a[i + offset] = (l + r) % _fft_mod
                    a[i + offset + p] = (l - r) * irot % _fft_mod
                if s + 1 != (1 << (len_ - 1)):
                    irot *= _fft_irate2[(~s & -~s).bit_length() - 1]
                    irot %= _fft_mod
            len_ -= 1
        else:
            p = 1 << (h - len_)
            irot = 1
            for s in range(1 << (len_ - 2)):
                irot2 = irot * irot % _fft_mod
                irot3 = irot2 * irot % _fft_mod
                offset = s << (h - len_ + 2)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p]
                    a2 = a[i + offset + p * 2]
                    a3 = a[i + offset + p * 3]
                    a2na3iimag = (a2 - a3) * _fft_iimag % _fft_mod
                    a[i + offset] = (a0 + a1 + a2 + a3) % _fft_mod
                    a[i + offset + p] = (a0 - a1 +
                                         a2na3iimag) * irot % _fft_mod
                    a[i + offset + p * 2] = (a0 + a1 -
                                             a2 - a3) * irot2 % _fft_mod
                    a[i + offset + p * 3] = (a0 - a1 -
                                             a2na3iimag) * irot3 % _fft_mod
                if s + 1 != (1 << (len_ - 1)):
                    irot *= _fft_irate3[(~s & -~s).bit_length() - 1]
                    irot %= _fft_mod
            len_ -= 2
 
 
def _convolution_naive(a, b):
    n = len(a)
    m = len(b)
    ans = [0] * (n + m - 1)
    if n < m:
        for j in range(m):
            for i in range(n):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
    else:
        for i in range(n):
            for j in range(m):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
    return ans
 
 
def _convolution_fft(a, b):
    a = a.copy()
    b = b.copy()
    n = len(a)
    m = len(b)
    z = 1 << (n + m - 2).bit_length()
    a += [0] * (z - n)
    _butterfly(a)
    b += [0] * (z - m)
    _butterfly(b)
    for i in range(z):
        a[i] = a[i] * b[i] % _fft_mod
    _butterfly_inv(a)
    a = a[:n + m - 1]
    iz = pow(z, _fft_mod - 2, _fft_mod)
    for i in range(n + m - 1):
        a[i] = a[i] * iz % _fft_mod
    return a
 
 
def _convolution_square(a):
    a = a.copy()
    n = len(a)
    z = 1 << (2 * n - 2).bit_length()
    a += [0] * (z - n)
    _butterfly(a)
    for i in range(z):
        a[i] = a[i] * a[i] % _fft_mod
    _butterfly_inv(a)
    a = a[:2 * n - 1]
    iz = pow(z, _fft_mod - 2, _fft_mod)
    for i in range(2 * n - 1):
        a[i] = a[i] * iz % _fft_mod
    return a
 
 
def convolution(a, b):
    """It calculates (+, x) convolution in mod 998244353. 
    Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1], 
    it calculates the array c of length n + m - 1, defined by
 
    >   c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353.
 
    It returns an empty list if at least one of a and b are empty.
 
    Constraints
    -----------
 
    >   len(a) + len(b) <= 8388609
 
    Complexity
    ----------
 
    >   O(n log n), where n = len(a) + len(b).
    """
    n = len(a)
    m = len(b)
    if n == 0 or m == 0:
        return []
    if min(n, m) <= 0:
        return _convolution_naive(a, b)
    if a is b:
        return _convolution_square(a)
    return _convolution_fft(a, b)

class SegmentTree:
    def __init__(self, init_val, segfunc, ide_ele):
        n = len(init_val)
        self.segfunc = segfunc
        self.ide_ele = ide_ele
        self.num = 1 << (n - 1).bit_length()
        self.tree = [ide_ele] * 2 * self.num
        self.size = n
        for i in range(n):
            self.tree[self.num + i] = init_val[i]
        for i in range(self.num - 1, 0, -1):
            self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1])

    def update(self, k, x):
        k += self.num
        self.tree[k] = x
        while k > 1:
            k >>= 1
            self.tree[k] = self.segfunc(self.tree[2*k], self.tree[2*k+1])

    def query(self, l, r):
        if r==self.size:
            r = self.num

        res = self.ide_ele

        l += self.num
        r += self.num
        right = []
        while l < r:
            if l & 1:
                res = self.segfunc(res, self.tree[l])
                l += 1
            if r & 1:
                right.append(self.tree[r-1])
            l >>= 1
            r >>= 1

        for e in right[::-1]:
            res = self.segfunc(res,e)
        return res
    
e = (-1,-1,-1,-1,-1)

def merge(x,y):
    #print(x,y)
    """
    0の個数、1の個数、0のindex_sum,1のindex_sum,01の個数の積の右累積和,01の個数の積の左累積和,これまでの和
    """
    if x == e: return y
    if y == e: return x

    zero = x[0] + y[0]
    one = x[1] + y[1]
    zero_index_sum = (x[2] + y[2] + y[0] * (x[0] + x[1])) % mod
    one_index_sum = (x[3] + y[3] + y[1] * (x[0] + x[1])) % mod
    right_cum = y[4] + x[4] + y[0] * (y[1] * (x[0] + x[1]) % mod) % mod + y[1] * x[2] % mod + y[0] * x[3] % mod
    right_cum %= mod
    left_cum = x[5] + y[5] + (x[0] * x[1] % mod) * (y[0] + y[1]) % mod + x[0] * ((y[0]+y[1]+1) * y[1] % mod - y[3]) % mod  + x[1] * ((y[0]+y[1]+1) * y[0] % mod - y[2]) % mod
    left_cum %= mod
    f_val = x[6] + y[6] + x[2] * ((y[0]+y[1]+1) * y[1] % mod - y[3]) % mod + x[3] * ((y[0]+y[1]+1) * y[0] % mod - y[2]) % mod
    f_val %= mod
    f_val += (x[0] + x[1]) * y[5] % mod + (y[0] + y[1]) * x[4] % mod
    f_val %= mod

    return (zero,one,zero_index_sum,one_index_sum,right_cum,left_cum,f_val)

N,Q = mi()
S = input()
S = [s for s in S]

init = []
for s in S:
    if s == "0":
        init.append((1,0,1,0,0,0,0))
    else:
        init.append((0,1,0,1,0,0,0))

seg = SegmentTree(init,merge,e)
res = []
for _ in range(Q):
    t,*query = mi()
    if t == 1:
        i = query[0]
        i -= 1
        if S[i] == "0":
            seg.update(i,(0,1,0,1,0,0,0))
            S[i] = "1"
        else:
            seg.update(i,(1,0,1,0,0,0,0))
            S[i] = "0"
    else:
        l,r = query
        l,r = l-1,r-1
        res.append(seg.query(l,r+1)[6])

print(*res,sep="\n")

0