結果

問題 No.2613 Sum of Combination
ユーザー dyktr_06dyktr_06
提出日時 2024-01-19 23:05:50
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 11,494 bytes
コンパイル時間 4,929 ms
コンパイル使用メモリ 273,808 KB
実行使用メモリ 10,276 KB
最終ジャッジ日時 2024-09-28 05:01:42
合計ジャッジ時間 10,937 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,812 KB
testcase_02 TLE -
testcase_03 -- -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
testcase_45 -- -
testcase_46 -- -
testcase_47 -- -
testcase_48 -- -
testcase_49 -- -
testcase_50 -- -
testcase_51 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#include <atcoder/all>

using namespace std;

#define overload4(_1, _2, _3, _4, name, ...) name
#define rep1(n) for(int i = 0; i < (int)(n); ++i)
#define rep2(i, n) for(int i = 0; i < (int)(n); ++i)
#define rep3(i, a, b) for(int i = (a); i < (int)(b); ++i)
#define rep4(i, a, b, c) for(int i = (a); i < (int)(b); i += (c))
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)

#define rrep(i,n) for(int i = (int)(n) - 1; i >= 0; --i)
#define ALL(a) (a).begin(), (a).end()
#define Sort(a) (sort((a).begin(), (a).end()))
#define RSort(a) (sort((a).rbegin(), (a).rend()))
#define UNIQUE(a) (a.erase(unique((a).begin(), (a).end()), (a).end()))

typedef long long int ll;
typedef unsigned long long ul;
typedef long double ld;
typedef vector<int> vi;
typedef vector<long long> vll;
typedef vector<char> vc;
typedef vector<string> vst;
typedef vector<double> vd;
typedef vector<long double> vld;
typedef pair<long long, long long> P;

template<class T> long long sum(const T& a){ return accumulate(a.begin(), a.end(), 0LL); }
template<class T> auto min(const T& a){ return *min_element(a.begin(), a.end()); }
template<class T> auto max(const T& a){ return *max_element(a.begin(), a.end()); }

const long long MINF = 0x7fffffffffff;
const long long INF = 0x1fffffffffffffff;
const long long MOD = 998244353;
const long double EPS = 1e-9;
const long double PI = acos(-1);
 
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }

template<typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &p){ is >> p.first >> p.second; return is; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){ os << "(" << p.first << ", " << p.second << ")"; return os; }
template<typename T> istream &operator>>(istream &is, vector<T> &v){ for(T &in : v) is >> in; return is; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &v){ for(int i = 0; i < (int) v.size(); ++i){ os << v[i] << (i + 1 != (int) v.size() ? " " : ""); } return os; }
template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp){ for(auto &[key, val] : mp){ os << key << ":" << val << " "; } return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int)st.size(); ++i){ os << *itr << (i + 1 != (int)st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int)st.size(); ++i){ os << *itr << (i + 1 != (int)st.size() ? " " : ""); itr++; } return os; }
template <typename T> ostream &operator<<(ostream &os, queue<T> q){ while(q.size()){ os << q.front() << " "; q.pop(); } return os; }
template <typename T> ostream &operator<<(ostream &os, deque<T> q){ while(q.size()){ os << q.front() << " "; q.pop_front(); } return os; }
template <typename T> ostream &operator<<(ostream &os, stack<T> st){ while(st.size()){ os << st.top() << " "; st.pop(); } return os; }
template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq){ while(pq.size()){ os << pq.top() << " "; pq.pop(); } return os; }

template<class T, class U> inline T vin(T& vec, U n) { vec.resize(n); for(int i = 0; i < (int) n; ++i) cin >> vec[i]; return vec; }
template<class T> inline void vout(T vec, string s = "\n"){ for(auto x : vec) cout << x << s; }
template<class... T> void in(T&... a){ (cin >> ... >> a); }
void out(){ cout << '\n'; }
template<class T, class... Ts> void out(const T& a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; }
template<class T, class U> void inGraph(vector<vector<T>>& G, U n, U m, bool directed = false){ G.resize(n); for(int i = 0; i < m; ++i){ int a, b; cin >> a >> b; a--, b--; G[a].push_back(b); if(!directed) G[b].push_back(a); } }

struct Barrett {
  using u32 = unsigned int;
  using i64 = long long;
  using u64 = unsigned long long;
  u32 m;
  u64 im;
  Barrett() : m(), im() {}
  Barrett(int n) : m(n), im(u64(-1) / m + 1) {}
  constexpr inline i64 quo(u64 n) {
    u64 x = u64((__uint128_t(n) * im) >> 64);
    u32 r = n - x * m;
    return m <= r ? x - 1 : x;
  }
  constexpr inline i64 rem(u64 n) {
    u64 x = u64((__uint128_t(n) * im) >> 64);
    u32 r = n - x * m;
    return m <= r ? r + m : r;
  }
  constexpr inline pair<i64, int> quorem(u64 n) {
    u64 x = u64((__uint128_t(n) * im) >> 64);
    u32 r = n - x * m;
    if (m <= r) return {x - 1, r + m};
    return {x, r};
  }
  constexpr inline i64 pow(u64 n, i64 p) {
    u32 a = rem(n), r = m == 1 ? 0 : 1;
    while (p) {
      if (p & 1) r = rem(u64(r) * a);
      a = rem(u64(a) * a);
      p >>= 1;
    }
    return r;
  }
};

#define PRIME_POWER_BINOMIAL_M_MAX ((1LL << 30) - 1)
#define PRIME_POWER_BINOMIAL_N_MAX 20000000

struct prime_power_binomial {
  int p, q, M;
  vector<int> fac, ifac, inv;
  int delta;
  Barrett bm, bp;

  prime_power_binomial(int _p, int _q) : p(_p), q(_q) {
    assert(1 < p && p <= PRIME_POWER_BINOMIAL_M_MAX);
    assert(_q > 0);
    long long m = 1;
    while (_q--) {
      m *= p;
      assert(m <= PRIME_POWER_BINOMIAL_M_MAX);
    }
    M = m;
    bm = Barrett(M), bp = Barrett(p);
    enumerate();
    delta = (p == 2 && q >= 3) ? 1 : M - 1;
  }

  void enumerate() {
    int MX = min<int>(M, PRIME_POWER_BINOMIAL_N_MAX + 10);
    fac.resize(MX);
    ifac.resize(MX);
    inv.resize(MX);
    fac[0] = ifac[0] = inv[0] = 1;
    fac[1] = ifac[1] = inv[1] = 1;
    for (int i = 2; i < MX; i++) {
      if (i % p == 0) {
        fac[i] = fac[i - 1];
        fac[i + 1] = bm.rem(1LL * fac[i - 1] * (i + 1));
        i++;
      } else {
        fac[i] = bm.rem(1LL * fac[i - 1] * i);
      }
    }
    ifac[MX - 1] = bm.pow(fac[MX - 1], M / p * (p - 1) - 1);
    for (int i = MX - 2; i > 1; --i) {
      if (i % p == 0) {
        ifac[i] = bm.rem(1LL * ifac[i + 1] * (i + 1));
        ifac[i - 1] = ifac[i];
        i--;
      } else {
        ifac[i] = bm.rem(1LL * ifac[i + 1] * (i + 1));
      }
    }
  }

  long long Lucas(long long n, long long m) {
    int res = 1;
    while (n) {
      int n0, m0;
      tie(n, n0) = bp.quorem(n);
      tie(m, m0) = bp.quorem(m);
      if (n0 < m0) return 0;
      res = bm.rem(1LL * res * fac[n0]);
      int buf = bm.rem(1LL * ifac[n0 - m0] * ifac[m0]);
      res = bm.rem(1LL * res * buf);
    }
    return res;
  }

  long long C(long long n, long long m) {
    if (n < m || n < 0 || m < 0) return 0;
    if (q == 1) return Lucas(n, m);
    long long r = n - m;
    int e0 = 0, eq = 0, i = 0;
    int res = 1;
    while (n) {
      res = bm.rem(1LL * res * fac[bm.rem(n)]);
      res = bm.rem(1LL * res * ifac[bm.rem(m)]);
      res = bm.rem(1LL * res * ifac[bm.rem(r)]);
      n = bp.quo(n);
      m = bp.quo(m);
      r = bp.quo(r);
      int eps = n - m - r;
      e0 += eps;
      if (e0 >= q) return 0;
      if (++i >= q) eq += eps;
    }
    if (eq & 1) res = bm.rem(1LL * res * delta);
    res = bm.rem(1LL * res * bm.pow(p, e0));
    return res;
  }
};

// constraints:
// (M <= 1e7 and max(N) <= 1e18) or (M < 2^30 and max(N) <= 2e7)
struct arbitrary_mod_binomial {
  int mod;
  vector<int> M;
  vector<prime_power_binomial> cs;

  arbitrary_mod_binomial(long long md) : mod(md) {
    assert(1 <= md);
    assert(md <= PRIME_POWER_BINOMIAL_M_MAX);
    for (int i = 2; i * i <= md; i++) {
      if (md % i == 0) {
        int j = 0, k = 1;
        while (md % i == 0) md /= i, j++, k *= i;
        M.push_back(k);
        cs.emplace_back(i, j);
        assert(M.back() == cs.back().M);
      }
    }
    if (md != 1) {
      M.push_back(md);
      cs.emplace_back(md, 1);
    }
    assert(M.size() == cs.size());
  }

  long long C(long long n, long long m) {
    if (mod == 1) return 0;
    vector<long long> rem, d;
    for (int i = 0; i < (int)cs.size(); i++) {
      rem.push_back(cs[i].C(n, m));
      d.push_back(M[i]);
    }
    return atcoder::crt(rem, d).first;
  }
};

template <long long Modulus>
struct ModInt{
    long long val;
    constexpr ModInt(const long long _val = 0) noexcept : val(_val) {
        normalize();
    }
    void normalize(){
        val = (val % Modulus + Modulus) % Modulus;
    }
    inline ModInt& operator+=(const ModInt& rhs) noexcept {
        if(val += rhs.val, val >= Modulus) val -= Modulus;
        return *this;
    }
    inline ModInt& operator-=(const ModInt& rhs) noexcept {
        if(val -= rhs.val, val < 0) val += Modulus;
        return *this;
    }
    inline ModInt& operator*=(const ModInt& rhs) noexcept {
        val = val * rhs.val % Modulus;
        return *this;
    }
    inline ModInt& operator/=(const ModInt& rhs) noexcept {
        val = val * inv(rhs.val).val % Modulus;
        return *this;
    }
    inline ModInt& operator++() noexcept {
        if(++val >= Modulus) val -= Modulus;
        return *this;
    }
    inline ModInt operator++(int) noexcept {
        ModInt t = val;
        if(++val >= Modulus) val -= Modulus;
        return t;
    }
    inline ModInt& operator--() noexcept {
        if(--val < 0) val += Modulus;
        return *this;
    }
    inline ModInt operator--(int) noexcept {
        ModInt t = val;
        if(--val < 0) val += Modulus;
        return t;
    }
    inline ModInt operator-() const noexcept { return (Modulus - val) % Modulus; }
    inline ModInt inv(void) const { return inv(val); }
    ModInt pow(long long n){
        assert(0 <= n);
        ModInt x = *this, r = 1;
        while(n){
            if(n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    ModInt inv(const long long n) const {
        long long a = n, b = Modulus, u = 1, v = 0;
        while(b){
            long long t = a / b;
            a -= t * b; swap(a, b);
            u -= t * v; swap(u, v);
        }
        u %= Modulus;
        if(u < 0) u += Modulus;
        return u;
    }
    friend inline ModInt operator+(const ModInt& lhs, const ModInt& rhs) noexcept { return ModInt(lhs) += rhs; }
    friend inline ModInt operator-(const ModInt& lhs, const ModInt& rhs) noexcept { return ModInt(lhs) -= rhs; }
    friend inline ModInt operator*(const ModInt& lhs, const ModInt& rhs) noexcept { return ModInt(lhs) *= rhs; }
    friend inline ModInt operator/(const ModInt& lhs, const ModInt& rhs) noexcept { return ModInt(lhs) /= rhs; }
    friend inline bool operator==(const ModInt& lhs, const ModInt& rhs) noexcept { return lhs.val == rhs.val; }
    friend inline bool operator!=(const ModInt& lhs, const ModInt& rhs) noexcept { return lhs.val != rhs.val; }
    friend inline istream& operator>>(istream& is, ModInt& x) noexcept {
        is >> x.val;
        x.normalize();
        return is;
    }
    friend inline ostream& operator<<(ostream& os, const ModInt& x) noexcept { return os << x.val; }
};


using mint = ModInt<998244353>;

ll n, p;

void input(){
    in(n, p);
}

void solve(){
    arbitrary_mod_binomial comb(p);
    mint ans = 0;
    if(p <= 2 * n || n <= 400000){
        rep(i, 0, n + 1){
            ans += comb.C(n, i);
        }
    }else{
        rep(i, p + 1){
            ans += 2 * comb.C(n, i);
        }
    }
    out(ans);
}

int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(20);
    
    input();
    solve();
}
0