結果
問題 | No.2613 Sum of Combination |
ユーザー | dyktr_06 |
提出日時 | 2024-01-19 23:05:50 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 11,494 bytes |
コンパイル時間 | 4,929 ms |
コンパイル使用メモリ | 273,808 KB |
実行使用メモリ | 10,276 KB |
最終ジャッジ日時 | 2024-09-28 05:01:42 |
合計ジャッジ時間 | 10,937 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,812 KB |
testcase_02 | TLE | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
testcase_44 | -- | - |
testcase_45 | -- | - |
testcase_46 | -- | - |
testcase_47 | -- | - |
testcase_48 | -- | - |
testcase_49 | -- | - |
testcase_50 | -- | - |
testcase_51 | -- | - |
ソースコード
#include <bits/stdc++.h> #include <atcoder/all> using namespace std; #define overload4(_1, _2, _3, _4, name, ...) name #define rep1(n) for(int i = 0; i < (int)(n); ++i) #define rep2(i, n) for(int i = 0; i < (int)(n); ++i) #define rep3(i, a, b) for(int i = (a); i < (int)(b); ++i) #define rep4(i, a, b, c) for(int i = (a); i < (int)(b); i += (c)) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rrep(i,n) for(int i = (int)(n) - 1; i >= 0; --i) #define ALL(a) (a).begin(), (a).end() #define Sort(a) (sort((a).begin(), (a).end())) #define RSort(a) (sort((a).rbegin(), (a).rend())) #define UNIQUE(a) (a.erase(unique((a).begin(), (a).end()), (a).end())) typedef long long int ll; typedef unsigned long long ul; typedef long double ld; typedef vector<int> vi; typedef vector<long long> vll; typedef vector<char> vc; typedef vector<string> vst; typedef vector<double> vd; typedef vector<long double> vld; typedef pair<long long, long long> P; template<class T> long long sum(const T& a){ return accumulate(a.begin(), a.end(), 0LL); } template<class T> auto min(const T& a){ return *min_element(a.begin(), a.end()); } template<class T> auto max(const T& a){ return *max_element(a.begin(), a.end()); } const long long MINF = 0x7fffffffffff; const long long INF = 0x1fffffffffffffff; const long long MOD = 998244353; const long double EPS = 1e-9; const long double PI = acos(-1); template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } template<typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &p){ is >> p.first >> p.second; return is; } template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){ os << "(" << p.first << ", " << p.second << ")"; return os; } template<typename T> istream &operator>>(istream &is, vector<T> &v){ for(T &in : v) is >> in; return is; } template<typename T> ostream &operator<<(ostream &os, const vector<T> &v){ for(int i = 0; i < (int) v.size(); ++i){ os << v[i] << (i + 1 != (int) v.size() ? " " : ""); } return os; } template <typename T, typename S> ostream &operator<<(ostream &os, const map<T, S> &mp){ for(auto &[key, val] : mp){ os << key << ":" << val << " "; } return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int)st.size(); ++i){ os << *itr << (i + 1 != (int)st.size() ? " " : ""); itr++; } return os; } template <typename T> ostream &operator<<(ostream &os, const multiset<T> &st){ auto itr = st.begin(); for(int i = 0; i < (int)st.size(); ++i){ os << *itr << (i + 1 != (int)st.size() ? " " : ""); itr++; } return os; } template <typename T> ostream &operator<<(ostream &os, queue<T> q){ while(q.size()){ os << q.front() << " "; q.pop(); } return os; } template <typename T> ostream &operator<<(ostream &os, deque<T> q){ while(q.size()){ os << q.front() << " "; q.pop_front(); } return os; } template <typename T> ostream &operator<<(ostream &os, stack<T> st){ while(st.size()){ os << st.top() << " "; st.pop(); } return os; } template <class T, class Container, class Compare> ostream &operator<<(ostream &os, priority_queue<T, Container, Compare> pq){ while(pq.size()){ os << pq.top() << " "; pq.pop(); } return os; } template<class T, class U> inline T vin(T& vec, U n) { vec.resize(n); for(int i = 0; i < (int) n; ++i) cin >> vec[i]; return vec; } template<class T> inline void vout(T vec, string s = "\n"){ for(auto x : vec) cout << x << s; } template<class... T> void in(T&... a){ (cin >> ... >> a); } void out(){ cout << '\n'; } template<class T, class... Ts> void out(const T& a, const Ts&... b){ cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; } template<class T, class U> void inGraph(vector<vector<T>>& G, U n, U m, bool directed = false){ G.resize(n); for(int i = 0; i < m; ++i){ int a, b; cin >> a >> b; a--, b--; G[a].push_back(b); if(!directed) G[b].push_back(a); } } struct Barrett { using u32 = unsigned int; using i64 = long long; using u64 = unsigned long long; u32 m; u64 im; Barrett() : m(), im() {} Barrett(int n) : m(n), im(u64(-1) / m + 1) {} constexpr inline i64 quo(u64 n) { u64 x = u64((__uint128_t(n) * im) >> 64); u32 r = n - x * m; return m <= r ? x - 1 : x; } constexpr inline i64 rem(u64 n) { u64 x = u64((__uint128_t(n) * im) >> 64); u32 r = n - x * m; return m <= r ? r + m : r; } constexpr inline pair<i64, int> quorem(u64 n) { u64 x = u64((__uint128_t(n) * im) >> 64); u32 r = n - x * m; if (m <= r) return {x - 1, r + m}; return {x, r}; } constexpr inline i64 pow(u64 n, i64 p) { u32 a = rem(n), r = m == 1 ? 0 : 1; while (p) { if (p & 1) r = rem(u64(r) * a); a = rem(u64(a) * a); p >>= 1; } return r; } }; #define PRIME_POWER_BINOMIAL_M_MAX ((1LL << 30) - 1) #define PRIME_POWER_BINOMIAL_N_MAX 20000000 struct prime_power_binomial { int p, q, M; vector<int> fac, ifac, inv; int delta; Barrett bm, bp; prime_power_binomial(int _p, int _q) : p(_p), q(_q) { assert(1 < p && p <= PRIME_POWER_BINOMIAL_M_MAX); assert(_q > 0); long long m = 1; while (_q--) { m *= p; assert(m <= PRIME_POWER_BINOMIAL_M_MAX); } M = m; bm = Barrett(M), bp = Barrett(p); enumerate(); delta = (p == 2 && q >= 3) ? 1 : M - 1; } void enumerate() { int MX = min<int>(M, PRIME_POWER_BINOMIAL_N_MAX + 10); fac.resize(MX); ifac.resize(MX); inv.resize(MX); fac[0] = ifac[0] = inv[0] = 1; fac[1] = ifac[1] = inv[1] = 1; for (int i = 2; i < MX; i++) { if (i % p == 0) { fac[i] = fac[i - 1]; fac[i + 1] = bm.rem(1LL * fac[i - 1] * (i + 1)); i++; } else { fac[i] = bm.rem(1LL * fac[i - 1] * i); } } ifac[MX - 1] = bm.pow(fac[MX - 1], M / p * (p - 1) - 1); for (int i = MX - 2; i > 1; --i) { if (i % p == 0) { ifac[i] = bm.rem(1LL * ifac[i + 1] * (i + 1)); ifac[i - 1] = ifac[i]; i--; } else { ifac[i] = bm.rem(1LL * ifac[i + 1] * (i + 1)); } } } long long Lucas(long long n, long long m) { int res = 1; while (n) { int n0, m0; tie(n, n0) = bp.quorem(n); tie(m, m0) = bp.quorem(m); if (n0 < m0) return 0; res = bm.rem(1LL * res * fac[n0]); int buf = bm.rem(1LL * ifac[n0 - m0] * ifac[m0]); res = bm.rem(1LL * res * buf); } return res; } long long C(long long n, long long m) { if (n < m || n < 0 || m < 0) return 0; if (q == 1) return Lucas(n, m); long long r = n - m; int e0 = 0, eq = 0, i = 0; int res = 1; while (n) { res = bm.rem(1LL * res * fac[bm.rem(n)]); res = bm.rem(1LL * res * ifac[bm.rem(m)]); res = bm.rem(1LL * res * ifac[bm.rem(r)]); n = bp.quo(n); m = bp.quo(m); r = bp.quo(r); int eps = n - m - r; e0 += eps; if (e0 >= q) return 0; if (++i >= q) eq += eps; } if (eq & 1) res = bm.rem(1LL * res * delta); res = bm.rem(1LL * res * bm.pow(p, e0)); return res; } }; // constraints: // (M <= 1e7 and max(N) <= 1e18) or (M < 2^30 and max(N) <= 2e7) struct arbitrary_mod_binomial { int mod; vector<int> M; vector<prime_power_binomial> cs; arbitrary_mod_binomial(long long md) : mod(md) { assert(1 <= md); assert(md <= PRIME_POWER_BINOMIAL_M_MAX); for (int i = 2; i * i <= md; i++) { if (md % i == 0) { int j = 0, k = 1; while (md % i == 0) md /= i, j++, k *= i; M.push_back(k); cs.emplace_back(i, j); assert(M.back() == cs.back().M); } } if (md != 1) { M.push_back(md); cs.emplace_back(md, 1); } assert(M.size() == cs.size()); } long long C(long long n, long long m) { if (mod == 1) return 0; vector<long long> rem, d; for (int i = 0; i < (int)cs.size(); i++) { rem.push_back(cs[i].C(n, m)); d.push_back(M[i]); } return atcoder::crt(rem, d).first; } }; template <long long Modulus> struct ModInt{ long long val; constexpr ModInt(const long long _val = 0) noexcept : val(_val) { normalize(); } void normalize(){ val = (val % Modulus + Modulus) % Modulus; } inline ModInt& operator+=(const ModInt& rhs) noexcept { if(val += rhs.val, val >= Modulus) val -= Modulus; return *this; } inline ModInt& operator-=(const ModInt& rhs) noexcept { if(val -= rhs.val, val < 0) val += Modulus; return *this; } inline ModInt& operator*=(const ModInt& rhs) noexcept { val = val * rhs.val % Modulus; return *this; } inline ModInt& operator/=(const ModInt& rhs) noexcept { val = val * inv(rhs.val).val % Modulus; return *this; } inline ModInt& operator++() noexcept { if(++val >= Modulus) val -= Modulus; return *this; } inline ModInt operator++(int) noexcept { ModInt t = val; if(++val >= Modulus) val -= Modulus; return t; } inline ModInt& operator--() noexcept { if(--val < 0) val += Modulus; return *this; } inline ModInt operator--(int) noexcept { ModInt t = val; if(--val < 0) val += Modulus; return t; } inline ModInt operator-() const noexcept { return (Modulus - val) % Modulus; } inline ModInt inv(void) const { return inv(val); } ModInt pow(long long n){ assert(0 <= n); ModInt x = *this, r = 1; while(n){ if(n & 1) r *= x; x *= x; n >>= 1; } return r; } ModInt inv(const long long n) const { long long a = n, b = Modulus, u = 1, v = 0; while(b){ long long t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } u %= Modulus; if(u < 0) u += Modulus; return u; } friend inline ModInt operator+(const ModInt& lhs, const ModInt& rhs) noexcept { return ModInt(lhs) += rhs; } friend inline ModInt operator-(const ModInt& lhs, const ModInt& rhs) noexcept { return ModInt(lhs) -= rhs; } friend inline ModInt operator*(const ModInt& lhs, const ModInt& rhs) noexcept { return ModInt(lhs) *= rhs; } friend inline ModInt operator/(const ModInt& lhs, const ModInt& rhs) noexcept { return ModInt(lhs) /= rhs; } friend inline bool operator==(const ModInt& lhs, const ModInt& rhs) noexcept { return lhs.val == rhs.val; } friend inline bool operator!=(const ModInt& lhs, const ModInt& rhs) noexcept { return lhs.val != rhs.val; } friend inline istream& operator>>(istream& is, ModInt& x) noexcept { is >> x.val; x.normalize(); return is; } friend inline ostream& operator<<(ostream& os, const ModInt& x) noexcept { return os << x.val; } }; using mint = ModInt<998244353>; ll n, p; void input(){ in(n, p); } void solve(){ arbitrary_mod_binomial comb(p); mint ans = 0; if(p <= 2 * n || n <= 400000){ rep(i, 0, n + 1){ ans += comb.C(n, i); } }else{ rep(i, p + 1){ ans += 2 * comb.C(n, i); } } out(ans); } int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(20); input(); solve(); }