結果

問題 No.2612 Close the Distance
ユーザー chineristACchineristAC
提出日時 2024-01-19 23:14:07
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 9,320 bytes
コンパイル時間 147 ms
コンパイル使用メモリ 81,828 KB
実行使用メモリ 279,768 KB
最終ジャッジ日時 2024-01-19 23:15:07
合計ジャッジ時間 52,357 ms
ジャッジサーバーID
(参考情報)
judge11 / judge14
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 65 ms
68,932 KB
testcase_01 AC 58 ms
68,932 KB
testcase_02 AC 60 ms
68,932 KB
testcase_03 AC 105 ms
82,092 KB
testcase_04 AC 104 ms
81,964 KB
testcase_05 AC 105 ms
82,116 KB
testcase_06 AC 2,054 ms
266,924 KB
testcase_07 AC 2,012 ms
271,404 KB
testcase_08 AC 2,094 ms
268,588 KB
testcase_09 AC 2,015 ms
270,636 KB
testcase_10 AC 2,056 ms
270,636 KB
testcase_11 AC 2,055 ms
271,148 KB
testcase_12 AC 2,135 ms
270,764 KB
testcase_13 AC 2,069 ms
272,044 KB
testcase_14 AC 1,994 ms
271,788 KB
testcase_15 AC 2,026 ms
271,148 KB
testcase_16 AC 2,876 ms
276,228 KB
testcase_17 AC 2,893 ms
275,172 KB
testcase_18 AC 2,951 ms
278,432 KB
testcase_19 AC 2,949 ms
276,236 KB
testcase_20 AC 2,958 ms
277,484 KB
testcase_21 AC 2,930 ms
277,028 KB
testcase_22 AC 2,896 ms
274,312 KB
testcase_23 TLE -
testcase_24 AC 2,995 ms
276,852 KB
testcase_25 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
from itertools import permutations
from heapq import heappop,heappush
from collections import deque
import random
import bisect
from math import gcd


input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())

mod = 998244353
omega = pow(3,119,mod)
rev_omega = pow(omega,mod-2,mod)

N = 2*10**5
g1 = [1]*(N+1) # 元テーブル
g2 = [1]*(N+1) #逆元テーブル
inv = [1]*(N+1) #逆元テーブル計算用テーブル

for i in range( 2, N + 1 ):
    g1[i]=( ( g1[i-1] * i ) % mod )
    inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod )
    g2[i]=( (g2[i-1] * inv[i]) % mod )
inv[0]=0

_fft_mod = 998244353
_fft_imag = 911660635
_fft_iimag = 86583718
_fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601,
              842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899)
_fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960,
               354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235)
_fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099,
              183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204)
_fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500,
               771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681)
 
 
def _butterfly(a):
    n = len(a)
    h = (n - 1).bit_length()
    len_ = 0
    while len_ < h:
        if h - len_ == 1:
            p = 1 << (h - len_ - 1)
            rot = 1
            for s in range(1 << len_):
                offset = s << (h - len_)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p] * rot % _fft_mod
                    a[i + offset] = (l + r) % _fft_mod
                    a[i + offset + p] = (l - r) % _fft_mod
                if s + 1 != (1 << len_):
                    rot *= _fft_rate2[(~s & -~s).bit_length() - 1]
                    rot %= _fft_mod
            len_ += 1
        else:
            p = 1 << (h - len_ - 2)
            rot = 1
            for s in range(1 << len_):
                rot2 = rot * rot % _fft_mod
                rot3 = rot2 * rot % _fft_mod
                offset = s << (h - len_)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p] * rot
                    a2 = a[i + offset + p * 2] * rot2
                    a3 = a[i + offset + p * 3] * rot3
                    a1na3imag = (a1 - a3) % _fft_mod * _fft_imag
                    a[i + offset] = (a0 + a2 + a1 + a3) % _fft_mod
                    a[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_mod
                    a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_mod
                    a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_mod
                if s + 1 != (1 << len_):
                    rot *= _fft_rate3[(~s & -~s).bit_length() - 1]
                    rot %= _fft_mod
            len_ += 2
 
 
def _butterfly_inv(a):
    n = len(a)
    h = (n - 1).bit_length()
    len_ = h
    while len_:
        if len_ == 1:
            p = 1 << (h - len_)
            irot = 1
            for s in range(1 << (len_ - 1)):
                offset = s << (h - len_ + 1)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p]
                    a[i + offset] = (l + r) % _fft_mod
                    a[i + offset + p] = (l - r) * irot % _fft_mod
                if s + 1 != (1 << (len_ - 1)):
                    irot *= _fft_irate2[(~s & -~s).bit_length() - 1]
                    irot %= _fft_mod
            len_ -= 1
        else:
            p = 1 << (h - len_)
            irot = 1
            for s in range(1 << (len_ - 2)):
                irot2 = irot * irot % _fft_mod
                irot3 = irot2 * irot % _fft_mod
                offset = s << (h - len_ + 2)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p]
                    a2 = a[i + offset + p * 2]
                    a3 = a[i + offset + p * 3]
                    a2na3iimag = (a2 - a3) * _fft_iimag % _fft_mod
                    a[i + offset] = (a0 + a1 + a2 + a3) % _fft_mod
                    a[i + offset + p] = (a0 - a1 +
                                         a2na3iimag) * irot % _fft_mod
                    a[i + offset + p * 2] = (a0 + a1 -
                                             a2 - a3) * irot2 % _fft_mod
                    a[i + offset + p * 3] = (a0 - a1 -
                                             a2na3iimag) * irot3 % _fft_mod
                if s + 1 != (1 << (len_ - 1)):
                    irot *= _fft_irate3[(~s & -~s).bit_length() - 1]
                    irot %= _fft_mod
            len_ -= 2
 
 
def _convolution_naive(a, b):
    n = len(a)
    m = len(b)
    ans = [0] * (n + m - 1)
    if n < m:
        for j in range(m):
            for i in range(n):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
    else:
        for i in range(n):
            for j in range(m):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
    return ans
 
 
def _convolution_fft(a, b):
    a = a.copy()
    b = b.copy()
    n = len(a)
    m = len(b)
    z = 1 << (n + m - 2).bit_length()
    a += [0] * (z - n)
    _butterfly(a)
    b += [0] * (z - m)
    _butterfly(b)
    for i in range(z):
        a[i] = a[i] * b[i] % _fft_mod
    _butterfly_inv(a)
    a = a[:n + m - 1]
    iz = pow(z, _fft_mod - 2, _fft_mod)
    for i in range(n + m - 1):
        a[i] = a[i] * iz % _fft_mod
    return a
 
 
def _convolution_square(a):
    a = a.copy()
    n = len(a)
    z = 1 << (2 * n - 2).bit_length()
    a += [0] * (z - n)
    _butterfly(a)
    for i in range(z):
        a[i] = a[i] * a[i] % _fft_mod
    _butterfly_inv(a)
    a = a[:2 * n - 1]
    iz = pow(z, _fft_mod - 2, _fft_mod)
    for i in range(2 * n - 1):
        a[i] = a[i] * iz % _fft_mod
    return a
 
 
def convolution(a, b):
    """It calculates (+, x) convolution in mod 998244353. 
    Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1], 
    it calculates the array c of length n + m - 1, defined by
 
    >   c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353.
 
    It returns an empty list if at least one of a and b are empty.
 
    Constraints
    -----------
 
    >   len(a) + len(b) <= 8388609
 
    Complexity
    ----------
 
    >   O(n log n), where n = len(a) + len(b).
    """
    n = len(a)
    m = len(b)
    if n == 0 or m == 0:
        return []
    if min(n, m) <= 0:
        return _convolution_naive(a, b)
    if a is b:
        return _convolution_square(a)
    return _convolution_fft(a, b)

N = int(input())
xy = []
for _ in range(N):
    x,y = mi()
    xy.append(((x+y,x-y)))

x_min,x_max = min(x for x,y in xy),max(x for x,y in xy)
y_min,y_max = min(y for x,y in xy),max(y for x,y in xy)
if x_max-x_min < y_max-y_min:
    xy = [(y,x) for x,y in xy]
    x_min,x_max = min(x for x,y in xy),max(x for x,y in xy)
    y_min,y_max = min(y for x,y in xy),max(y for x,y in xy)
xy.sort(key=lambda x:x[0])    

R,L = x_max-x_min,y_max-y_min
ok = R
ng = L
while ok-ng>1:
    mid = (ok+ng)//2

    cnt = 1
    left = xy[0][0]
    for x,y in xy:
        if x <= left + mid:
            continue
        cnt += 1
        left = x
    if cnt <= 3:
        ok = mid
    else:
        ng = mid





def cond_2sq(tmp_xy,D):
    if not tmp_xy:
        return True
    x_min,x_max = min(x for x,y in tmp_xy),max(x for x,y in tmp_xy)
    y_min,y_max = min(y for x,y in tmp_xy),max(y for x,y in tmp_xy)

    """
    x_min,y_minを同時達成 or x_max,y_minを同時達成
    """
    for px,py in [(x_min,y_min),(x_max-D,y_min)]:
        tmp_x_min,tmp_x_max = x_max,x_min
        tmp_y_min,tmp_y_max = y_max,y_min
        for x,y in tmp_xy:
            if not px <= x <= px + D or not py <= y <= py + D:
                tmp_x_min = min(tmp_x_min,x)
                tmp_x_max = max(tmp_x_max,x)
                tmp_y_min = min(tmp_y_min,y)
                tmp_y_max = max(tmp_y_max,y)
        if (tmp_x_max-tmp_x_min) <= D and (tmp_y_max-tmp_y_min) <= D:
            return True
    return False

res = ok
#print("xy",xy)
for _ in range(4):
    x_min,y_min = min(x for x,y in xy),min(y for x,y in xy)
    #print(x_min,y_min)
    def cond_3sq(D):
        tmp_xy = []
        #print(x_min,y_min)
        for x,y in xy:
            if not x_min <= x <= x_min+D or not y_min <= y <= y_min+D:
                tmp_xy.append((x,y))
        #print(tmp_xy)
        return cond_2sq(tmp_xy,D)
    #print(cond_3sq(47))
    
    ok = res
    ng = -1
    while ok-ng>1:
        mid = (ok+ng)//2
        if cond_3sq(mid):
            ok = mid
        else:
            ng = mid
    res = ok

    xy = [(-y,x) for x,y in xy]

print(res)
        
0