結果
問題 | No.1302 Random Tree Score |
ユーザー | AC2K |
提出日時 | 2024-01-22 17:31:55 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 28 ms / 3,000 ms |
コード長 | 41,741 bytes |
コンパイル時間 | 4,119 ms |
コンパイル使用メモリ | 278,640 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-28 06:26:49 |
合計ジャッジ時間 | 5,230 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 5 ms
5,248 KB |
testcase_01 | AC | 5 ms
5,376 KB |
testcase_02 | AC | 12 ms
5,376 KB |
testcase_03 | AC | 17 ms
5,376 KB |
testcase_04 | AC | 11 ms
5,376 KB |
testcase_05 | AC | 26 ms
5,376 KB |
testcase_06 | AC | 27 ms
5,376 KB |
testcase_07 | AC | 11 ms
5,376 KB |
testcase_08 | AC | 20 ms
5,376 KB |
testcase_09 | AC | 28 ms
5,376 KB |
testcase_10 | AC | 20 ms
5,376 KB |
testcase_11 | AC | 9 ms
5,376 KB |
testcase_12 | AC | 24 ms
5,376 KB |
testcase_13 | AC | 5 ms
5,376 KB |
testcase_14 | AC | 28 ms
5,376 KB |
testcase_15 | AC | 28 ms
5,376 KB |
testcase_16 | AC | 5 ms
5,376 KB |
ソースコード
#line 2 "Library/src/FormalPowerSeries/FPS.hpp" #include <vector> #line 1 "Library/src/atcoder/convolution.hpp" #include <algorithm> #include <array> #include <cassert> #include <type_traits> #line 9 "Library/src/atcoder/convolution.hpp" #line 1 "Library/src/atcoder/internal_bit.hpp" #ifdef _MSC_VER #include <intrin.h> #endif #if __cplusplus >= 202002L #include <bit> #endif namespace atcoder { namespace internal { #if __cplusplus >= 202002L using std::bit_ceil; #else // @return same with std::bit::bit_ceil unsigned int bit_ceil(unsigned int n) { unsigned int x = 1; while (x < (unsigned int)(n)) x *= 2; return x; } #endif // @param n `1 <= n` // @return same with std::bit::countr_zero int countr_zero(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } // @param n `1 <= n` // @return same with std::bit::countr_zero constexpr int countr_zero_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } } // namespace internal } // namespace atcoder #line 1 "Library/src/atcoder/modint.hpp" #line 5 "Library/src/atcoder/modint.hpp" #include <numeric> #line 7 "Library/src/atcoder/modint.hpp" #ifdef _MSC_VER #include <intrin.h> #endif #line 1 "Library/src/atcoder/internal_math.hpp" #include <utility> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m` explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned long long y = x * _m; return (unsigned int)(z - y + (z < y ? _m : 0)); } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); // @param n `n < 2^32` // @param m `1 <= m < 2^32` // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64) unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; // y_max < m * (n + 1) // floor(y_max / m) <= n n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #line 1 "Library/src/atcoder/internal_type_traits.hpp" #line 7 "Library/src/atcoder/internal_type_traits.hpp" namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder #line 14 "Library/src/atcoder/modint.hpp" namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder #line 12 "Library/src/atcoder/convolution.hpp" namespace atcoder { namespace internal { template <class mint, int g = internal::primitive_root<mint::mod()>, internal::is_static_modint_t<mint>* = nullptr> struct fft_info { static constexpr int rank2 = countr_zero_constexpr(mint::mod() - 1); std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1 std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1 std::array<mint, std::max(0, rank2 - 2 + 1)> rate2; std::array<mint, std::max(0, rank2 - 2 + 1)> irate2; std::array<mint, std::max(0, rank2 - 3 + 1)> rate3; std::array<mint, std::max(0, rank2 - 3 + 1)> irate3; fft_info() { root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } } }; template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly(std::vector<mint>& a) { int n = int(a.size()); int h = internal::countr_zero((unsigned int)n); static const fft_info<mint> info; int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); mint rot = 1; for (int s = 0; s < (1 << len); s++) { int offset = s << (h - len); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } if (s + 1 != (1 << len)) rot *= info.rate2[countr_zero(~(unsigned int)(s))]; } len++; } else { // 4-base int p = 1 << (h - len - 2); mint rot = 1, imag = info.root[2]; for (int s = 0; s < (1 << len); s++) { mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { auto mod2 = 1ULL * mint::mod() * mint::mod(); auto a0 = 1ULL * a[i + offset].val(); auto a1 = 1ULL * a[i + offset + p].val() * rot.val(); auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val(); auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val(); auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val(); auto na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } if (s + 1 != (1 << len)) rot *= info.rate3[countr_zero(~(unsigned int)(s))]; } len += 2; } } } template <class mint, internal::is_static_modint_t<mint>* = nullptr> void butterfly_inv(std::vector<mint>& a) { int n = int(a.size()); int h = internal::countr_zero((unsigned int)n); static const fft_info<mint> info; int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len) { if (len == 1) { int p = 1 << (h - len); mint irot = 1; for (int s = 0; s < (1 << (len - 1)); s++) { int offset = s << (h - len + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::mod() + l.val() - r.val()) * irot.val(); ; } if (s + 1 != (1 << (len - 1))) irot *= info.irate2[countr_zero(~(unsigned int)(s))]; } len--; } else { // 4-base int p = 1 << (h - len); mint irot = 1, iimag = info.iroot[2]; for (int s = 0; s < (1 << (len - 2)); s++) { mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { auto a0 = 1ULL * a[i + offset + 0 * p].val(); auto a1 = 1ULL * a[i + offset + 1 * p].val(); auto a2 = 1ULL * a[i + offset + 2 * p].val(); auto a3 = 1ULL * a[i + offset + 3 * p].val(); auto a2na3iimag = 1ULL * mint((mint::mod() + a2 - a3) * iimag.val()).val(); a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + (mint::mod() - a1) + a2na3iimag) * irot.val(); a[i + offset + 2 * p] = (a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) * irot2.val(); a[i + offset + 3 * p] = (a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) * irot3.val(); } if (s + 1 != (1 << (len - 2))) irot *= info.irate3[countr_zero(~(unsigned int)(s))]; } len -= 2; } } } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution_naive(const std::vector<mint>& a, const std::vector<mint>& b) { int n = int(a.size()), m = int(b.size()); std::vector<mint> ans(n + m - 1); if (n < m) { for (int j = 0; j < m; j++) { for (int i = 0; i < n; i++) { ans[i + j] += a[i] * b[j]; } } } else { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ans[i + j] += a[i] * b[j]; } } } return ans; } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) { int n = int(a.size()), m = int(b.size()); int z = (int)internal::bit_ceil((unsigned int)(n + m - 1)); a.resize(z); internal::butterfly(a); b.resize(z); internal::butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } internal::butterfly_inv(a); a.resize(n + m - 1); mint iz = mint(z).inv(); for (int i = 0; i < n + m - 1; i++) a[i] *= iz; return a; } } // namespace internal template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; int z = (int)internal::bit_ceil((unsigned int)(n + m - 1)); assert((mint::mod() - 1) % z == 0); if (std::min(n, m) <= 60) return convolution_naive(a, b); return internal::convolution_fft(a, b); } template <class mint, internal::is_static_modint_t<mint>* = nullptr> std::vector<mint> convolution(const std::vector<mint>& a, const std::vector<mint>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; int z = (int)internal::bit_ceil((unsigned int)(n + m - 1)); assert((mint::mod() - 1) % z == 0); if (std::min(n, m) <= 60) return convolution_naive(a, b); return internal::convolution_fft(a, b); } template <unsigned int mod = 998244353, class T, std::enable_if_t<internal::is_integral<T>::value>* = nullptr> std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; using mint = static_modint<mod>; int z = (int)internal::bit_ceil((unsigned int)(n + m - 1)); assert((mint::mod() - 1) % z == 0); std::vector<mint> a2(n), b2(m); for (int i = 0; i < n; i++) { a2[i] = mint(a[i]); } for (int i = 0; i < m; i++) { b2[i] = mint(b[i]); } auto c2 = convolution(std::move(a2), std::move(b2)); std::vector<T> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { c[i] = c2[i].val(); } return c; } std::vector<long long> convolution_ll(const std::vector<long long>& a, const std::vector<long long>& b) { int n = int(a.size()), m = int(b.size()); if (!n || !m) return {}; static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static constexpr unsigned long long i1 = internal::inv_gcd(MOD2 * MOD3, MOD1).second; static constexpr unsigned long long i2 = internal::inv_gcd(MOD1 * MOD3, MOD2).second; static constexpr unsigned long long i3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; static constexpr int MAX_AB_BIT = 24; static_assert(MOD1 % (1ull << MAX_AB_BIT) == 1, "MOD1 isn't enough to support an array length of 2^24."); static_assert(MOD2 % (1ull << MAX_AB_BIT) == 1, "MOD2 isn't enough to support an array length of 2^24."); static_assert(MOD3 % (1ull << MAX_AB_BIT) == 1, "MOD3 isn't enough to support an array length of 2^24."); assert(n + m - 1 <= (1 << MAX_AB_BIT)); auto c1 = convolution<MOD1>(a, b); auto c2 = convolution<MOD2>(a, b); auto c3 = convolution<MOD3>(a, b); std::vector<long long> c(n + m - 1); for (int i = 0; i < n + m - 1; i++) { unsigned long long x = 0; x += (c1[i] * i1) % MOD1 * M2M3; x += (c2[i] * i2) % MOD2 * M1M3; x += (c3[i] * i3) % MOD3 * M1M2; // B = 2^63, -B <= x, r(real value) < B // (x, x - M, x - 2M, or x - 3M) = r (mod 2B) // r = c1[i] (mod MOD1) // focus on MOD1 // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B) // r = x, // x - M' + (0 or 2B), // x - 2M' + (0, 2B or 4B), // x - 3M' + (0, 2B, 4B or 6B) (without mod!) // (r - x) = 0, (0) // - M' + (0 or 2B), (1) // -2M' + (0 or 2B or 4B), (2) // -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1) // we checked that // ((1) mod MOD1) mod 5 = 2 // ((2) mod MOD1) mod 5 = 3 // ((3) mod MOD1) mod 5 = 4 long long diff = c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = { 0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } } // namespace atcoder #line 4 "Library/src/FormalPowerSeries/FPS.hpp" namespace kyopro{ template <typename mint, atcoder::internal::is_modint_t<mint>* = nullptr> struct FormalPowerSeries : public std::vector<mint> { using std::vector<mint>::vector; using FPS = FormalPowerSeries<mint>; void expand(size_t sz) { if (this->size() < sz) this->resize(sz); } void shrink() { while (!(*this).empty() && (*this).back().val() == 0) (*this).pop_back(); } FPS pref(size_t sz) const { FPS g((*this).begin(), (*this).begin() + std::min(sz, this->size())); g.expand(sz); return g; } FPS& operator+=(const FPS& rhs) { expand(rhs.size()); for (int i = 0; i < (int)rhs.size(); ++i) (*this)[i] += rhs[i]; return (*this); } FPS& operator-=(const FPS& rhs) { expand(rhs.size()); for (int i = 0; i < (int)rhs.size(); ++i) (*this)[i] -= rhs[i]; return (*this); } FPS& operator*=(const FPS& rhs) { shrink(); std::vector res = atcoder::convolution<mint>(*this, rhs); (*this) = {res.begin(), res.end()}; return (*this); } FPS& operator+=(const mint& rhs) { expand(1); (*this)[0] += rhs; return (*this); } FPS& operator-=(const mint& rhs) { expand(1); (*this)[0] -= rhs; return (*this); } FPS& operator*=(const mint& rhs) { for (int i = 0; i < (int)this->size(); ++i) { (*this)[i] *= rhs; } return (*this); } FPS& operator/=(const mint& rhs) { const mint invr = rhs.inv(); for (int i = 0; i < (int)this->size(); ++i) { (*this)[i] *= invr; } return (*this); } FPS operator+(const FPS& rhs) const { return FPS(*this) += rhs; } FPS operator-(const FPS& rhs) const { return FPS(*this) -= rhs; } FPS operator*(const FPS& rhs) const { return FPS(*this) *= rhs; } FPS operator+(const mint& rhs) const { return FPS(*this) += rhs; } FPS operator-(const mint& rhs) const { return FPS(*this) -= rhs; } FPS operator*(const mint& rhs) const { return FPS(*this) *= rhs; } FPS operator/(const mint& rhs) const { return FPS(*this) /= rhs; } FPS operator>>(int sz) const { if ((int)this->size() <= sz) return {}; FPS ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } FPS operator<<(int sz) const { FPS ret(*this); ret.insert(ret.begin(), sz, mint(0)); return ret; } // 積分 FPS integral() const { FPS res(this->size() + 1); for (int i = 0; i < (int)this->size(); ++i) { res[i + 1] = (*this)[i] * mint(i + 1).inv(); } return res; } // 微分 FPS prime() const { FPS res(this->size() - 1); for (int i = 1; i < (int)this->size(); ++i) { res[i - 1] = (*this)[i] * mint::raw(i); } return res; } // 逆元 FPS inv(size_t sz = -1) const { assert(!(*this).empty() && (*this)[0] != mint()); if (sz == -1) sz = this->size(); FPS g{mint(1) / (*this)[0]}; for (int d = 1; d < sz; d <<= 1) { g = (g * 2 - g * g * (*this).pref(2 * d)).pref(2 * d); } return g.pref(sz); } FPS& operator/=(const FPS& rhs) { return (*this) *= rhs.inv(); } FPS operator/(const FPS& rhs) const { return FPS(*this) *= rhs.inv(); } FPS log(size_t sz = -1) const { assert(!(this->empty()) && (*this)[0].val() == 1); if (sz == -1) sz = this->size(); return ((*this).prime() * (*this).inv(sz - 1)).pref(sz - 1).integral(); }; FPS exp(size_t sz = -1) const { assert(!(this->empty()) && (*this)[0].val() == 0); if (sz == -1) sz = this->size(); FPS g{mint::raw(1)}; for (int d = 1; d < sz; d <<= 1) { g = (g * (FPS{mint::raw(1)} - g.log(2 * d) + (*this).pref(2 * d))) .pref(2 * d); } return g; } FPS pow(long long e, size_t sz = -1) const { if (sz == -1) sz = this->size(); if (e == 0) { FPS res(sz); if (sz) res[0] = mint::raw(1); return res; } int p = 0; while (p < (int)this->size() && (*this)[p].val() == 0) ++p; if (__int128_t(p) * e >= sz) { return FPS(sz); } mint vp = (*this)[p]; FPS f = (*this >> p); f /= vp; f = (f.log(sz) * e).exp(sz); f *= vp.pow(e); f = (f << (p * e)).pref(sz); f.expand(sz); return f; } }; }; // namespace kyopro /** * @brief 形式的べき級数 */ #line 1 "Library/src/debug.hpp" #ifdef ONLINE_JUDGE #define debug(x) void(0) #else #define _GLIBCXX_DEBUG #define debug(x) std::cerr << __LINE__ << " : " << #x << " = " << (x) << std::endl #endif #line 2 "Library/src/stream.hpp" #include <ctype.h> #include <stdio.h> #include <string> #line 2 "Library/src/internal/type_traits.hpp" #include <iostream> #include <limits> #line 5 "Library/src/internal/type_traits.hpp" #include <typeinfo> #include <cstdint> namespace kyopro { namespace internal { template <typename... Args> struct first_enabled {}; template <typename T, typename... Args> struct first_enabled<std::enable_if<true, T>, Args...> { using type = T; }; template <typename T, typename... Args> struct first_enabled<std::enable_if<false, T>, Args...> : first_enabled<Args...> {}; template <typename T, typename... Args> struct first_enabled<T, Args...> { using type = T; }; template <typename... Args> using first_enabled_t = typename first_enabled<Args...>::type; template <int dgt, std::enable_if_t<dgt <= 128>* = nullptr> struct int_least { using type = first_enabled_t<std::enable_if<dgt <= 8, std::int8_t>, std::enable_if<dgt <= 16, std::int16_t>, std::enable_if<dgt <= 32, std::int32_t>, std::enable_if<dgt <= 64, std::int64_t>, std::enable_if<dgt <= 128, __int128_t>>; }; template <int dgt, std::enable_if_t<dgt <= 128>* = nullptr> struct uint_least { using type = first_enabled_t<std::enable_if<dgt <= 8, std::uint8_t>, std::enable_if<dgt <= 16, std::uint16_t>, std::enable_if<dgt <= 32, std::uint32_t>, std::enable_if<dgt <= 64, std::uint64_t>, std::enable_if<dgt <= 128, __uint128_t>>; }; template <int dgt> using int_least_t = typename int_least<dgt>::type; template <int dgt> using uint_least_t = typename uint_least<dgt>::type; template <typename T> using double_size_uint_t = uint_least_t<2 * std::numeric_limits<T>::digits>; template <typename T> using double_size_int_t = int_least_t<2 * std::numeric_limits<T>::digits>; struct modint_base {}; template <typename T> using is_modint = std::is_base_of<modint_base, T>; template <typename T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; // is_integral template <typename T> using is_integral_t = std::enable_if_t<std::is_integral_v<T> || std::is_same_v<T, __int128_t> || std::is_same_v<T, __uint128_t>>; }; // namespace internal }; // namespace kyopro /* * @ref https://qiita.com/kazatsuyu/items/f8c3b304e7f8b35263d8 */ #line 6 "Library/src/stream.hpp" namespace kyopro { inline void single_read(char& c) { c = getchar_unlocked(); while (isspace(c)) c = getchar_unlocked(); } template <typename T, internal::is_integral_t<T>* = nullptr> inline void single_read(T& a) { a = 0; bool is_negative = false; char c = getchar_unlocked(); while (isspace(c)) { c = getchar_unlocked(); } if (c == '-') is_negative = true, c = getchar_unlocked(); while (isdigit(c)) { a = 10 * a + (c - '0'); c = getchar_unlocked(); } if (is_negative) a *= -1; } template <typename T, internal::is_modint_t<T>* = nullptr> inline void single_read(T& a) { long long x; single_read(x); a = T(x); } inline void single_read(std::string& str) noexcept { char c = getchar_unlocked(); while (isspace(c)) c = getchar_unlocked(); while (!isspace(c)) { str += c; c = getchar_unlocked(); } } template<typename T> inline void read(T& x) noexcept {single_read(x);} template <typename Head, typename... Tail> inline void read(Head& head, Tail&... tail) noexcept { single_read(head), read(tail...); } inline void single_write(char c) noexcept { putchar_unlocked(c); } template <typename T, internal::is_integral_t<T>* = nullptr> inline void single_write(T a) noexcept { if (!a) { putchar_unlocked('0'); return; } if constexpr (std::is_signed_v<T>) { if (a < 0) putchar_unlocked('-'), a *= -1; } constexpr int d = std::numeric_limits<T>::digits10; char s[d + 1]; int now = d + 1; while (a) { s[--now] = (char)'0' + a % 10; a /= 10; } while (now <= d) putchar_unlocked(s[now++]); } template <typename T, internal::is_modint_t<T>* = nullptr> inline void single_write(T a) noexcept { single_write(a.val()); } inline void single_write(const std::string& str) noexcept { for (auto c : str) { putchar_unlocked(c); } } template <typename T> inline void write(T x) noexcept { single_write(x); } template <typename Head, typename... Tail> inline void write(Head head, Tail... tail) noexcept { single_write(head); putchar_unlocked(' '); write(tail...); } template <typename... Args> inline void put(Args... x) noexcept { write(x...); putchar_unlocked('\n'); } }; // namespace kyopro /** * @brief 高速入出力 */ #line 2 "Library/src/template.hpp" #include <bits/stdc++.h> #define rep(i, n) for (int i = 0; i < (n); i++) #define all(x) std::begin(x), std::end(x) #define popcount(x) __builtin_popcountll(x) using i128 = __int128_t; using ll = long long; using ld = long double; using graph = std::vector<std::vector<int>>; using P = std::pair<int, int>; constexpr int inf = std::numeric_limits<int>::max() / 2; constexpr ll infl = std::numeric_limits<ll>::max() / 2; const long double pi = acosl(-1); constexpr uint64_t MOD = 1e9 + 7; constexpr uint64_t MOD2 = 998244353; constexpr int dx[] = {1, 0, -1, 0, 1, -1, -1, 1, 0}; constexpr int dy[] = {0, 1, 0, -1, 1, 1, -1, -1, 0}; template <typename T1, typename T2> constexpr inline bool chmax(T1& a, T2 b) { return a < b && (a = b, true); } template <typename T1, typename T2> constexpr inline bool chmin(T1& a, T2 b) { return a > b && (a = b, true); } #line 4 "Library/src/math/combination.hpp" using namespace std; namespace kyopro { template <typename mint, int sz> class combination { const int M; mint fac[sz + 1], ifac[sz + 1]; public: combination() : M(std::min<int>(mint::mod(), sz)) { assert(mint::mod()); fac[0] = mint(1), ifac[0] = mint(1), fac[1] = mint(1), ifac[1] = mint(1); for (int i = 2; i <= M; ++i) { fac[i] = fac[i - 1] * i; } ifac[M - 1] = mint(1) / fac[M - 1]; for (int i = M - 2; i > 1; --i) { ifac[i] = ifac[i + 1] * (i + 1); } } constexpr mint fact(int n) const { assert(0 <= n && n <= sz); return fac[n]; } constexpr mint ifact(int n) const { assert(0 <= n && n <= sz); return ifac[n]; } constexpr mint binom(int n, int r) const { assert(n >= r); return fact(n) * ifact(r) * ifact(n - r); } constexpr mint perm(int n, int r) const { assert(n >= r); return fact(n) * ifact(n - r); } }; }; // namespace kyopro /** * @brief 二項係数 */ #line 6 "a.cpp" using namespace std; using namespace kyopro; using mint = atcoder::modint998244353; using FPS = FormalPowerSeries<mint>; combination<mint, (int)2e5> com; int main() { int n; read(n); // [x^i] (e^nx) auto coeff_f = [&](int i) { return mint(n).pow(i) / com.fact(i); }; auto coeff_g = [&](int i) { return com.binom(n, i); }; int idx = n - 2; mint ans = 0; rep(i, idx + 1) ans += coeff_f(idx - i) * coeff_g(i); mint fac = mint::raw(1); for (int i = 1; i <= n - 2; ++i) fac *= mint::raw(i); ans *= fac; ans /= mint::raw(n).pow(n - 2); put(ans.val()); }