結果

問題 No.1302 Random Tree Score
ユーザー AC2KAC2K
提出日時 2024-01-22 17:31:55
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 28 ms / 3,000 ms
コード長 41,741 bytes
コンパイル時間 4,119 ms
コンパイル使用メモリ 278,640 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-28 06:26:49
合計ジャッジ時間 5,230 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
5,248 KB
testcase_01 AC 5 ms
5,376 KB
testcase_02 AC 12 ms
5,376 KB
testcase_03 AC 17 ms
5,376 KB
testcase_04 AC 11 ms
5,376 KB
testcase_05 AC 26 ms
5,376 KB
testcase_06 AC 27 ms
5,376 KB
testcase_07 AC 11 ms
5,376 KB
testcase_08 AC 20 ms
5,376 KB
testcase_09 AC 28 ms
5,376 KB
testcase_10 AC 20 ms
5,376 KB
testcase_11 AC 9 ms
5,376 KB
testcase_12 AC 24 ms
5,376 KB
testcase_13 AC 5 ms
5,376 KB
testcase_14 AC 28 ms
5,376 KB
testcase_15 AC 28 ms
5,376 KB
testcase_16 AC 5 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "Library/src/FormalPowerSeries/FPS.hpp"
#include <vector>
#line 1 "Library/src/atcoder/convolution.hpp"



#include <algorithm>
#include <array>
#include <cassert>
#include <type_traits>
#line 9 "Library/src/atcoder/convolution.hpp"

#line 1 "Library/src/atcoder/internal_bit.hpp"



#ifdef _MSC_VER
#include <intrin.h>
#endif

#if __cplusplus >= 202002L
#include <bit>
#endif

namespace atcoder {

namespace internal {

#if __cplusplus >= 202002L

using std::bit_ceil;

#else

// @return same with std::bit::bit_ceil
unsigned int bit_ceil(unsigned int n) {
    unsigned int x = 1;
    while (x < (unsigned int)(n)) x *= 2;
    return x;
}

#endif

// @param n `1 <= n`
// @return same with std::bit::countr_zero
int countr_zero(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

// @param n `1 <= n`
// @return same with std::bit::countr_zero
constexpr int countr_zero_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

}  // namespace internal

}  // namespace atcoder


#line 1 "Library/src/atcoder/modint.hpp"



#line 5 "Library/src/atcoder/modint.hpp"
#include <numeric>
#line 7 "Library/src/atcoder/modint.hpp"

#ifdef _MSC_VER
#include <intrin.h>
#endif

#line 1 "Library/src/atcoder/internal_math.hpp"



#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned long long y = x * _m;
        return (unsigned int)(z - y + (z < y ? _m : 0));
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#line 1 "Library/src/atcoder/internal_type_traits.hpp"



#line 7 "Library/src/atcoder/internal_type_traits.hpp"

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


#line 14 "Library/src/atcoder/modint.hpp"

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#line 12 "Library/src/atcoder/convolution.hpp"

namespace atcoder {

namespace internal {

template <class mint,
          int g = internal::primitive_root<mint::mod()>,
          internal::is_static_modint_t<mint>* = nullptr>
struct fft_info {
    static constexpr int rank2 = countr_zero_constexpr(mint::mod() - 1);
    std::array<mint, rank2 + 1> root;   // root[i]^(2^i) == 1
    std::array<mint, rank2 + 1> iroot;  // root[i] * iroot[i] == 1

    std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
    std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;

    std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
    std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;

    fft_info() {
        root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
        iroot[rank2] = root[rank2].inv();
        for (int i = rank2 - 1; i >= 0; i--) {
            root[i] = root[i + 1] * root[i + 1];
            iroot[i] = iroot[i + 1] * iroot[i + 1];
        }

        {
            mint prod = 1, iprod = 1;
            for (int i = 0; i <= rank2 - 2; i++) {
                rate2[i] = root[i + 2] * prod;
                irate2[i] = iroot[i + 2] * iprod;
                prod *= iroot[i + 2];
                iprod *= root[i + 2];
            }
        }
        {
            mint prod = 1, iprod = 1;
            for (int i = 0; i <= rank2 - 3; i++) {
                rate3[i] = root[i + 3] * prod;
                irate3[i] = iroot[i + 3] * iprod;
                prod *= iroot[i + 3];
                iprod *= root[i + 3];
            }
        }
    }
};

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
    int n = int(a.size());
    int h = internal::countr_zero((unsigned int)n);

    static const fft_info<mint> info;

    int len = 0;  // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
    while (len < h) {
        if (h - len == 1) {
            int p = 1 << (h - len - 1);
            mint rot = 1;
            for (int s = 0; s < (1 << len); s++) {
                int offset = s << (h - len);
                for (int i = 0; i < p; i++) {
                    auto l = a[i + offset];
                    auto r = a[i + offset + p] * rot;
                    a[i + offset] = l + r;
                    a[i + offset + p] = l - r;
                }
                if (s + 1 != (1 << len))
                    rot *= info.rate2[countr_zero(~(unsigned int)(s))];
            }
            len++;
        } else {
            // 4-base
            int p = 1 << (h - len - 2);
            mint rot = 1, imag = info.root[2];
            for (int s = 0; s < (1 << len); s++) {
                mint rot2 = rot * rot;
                mint rot3 = rot2 * rot;
                int offset = s << (h - len);
                for (int i = 0; i < p; i++) {
                    auto mod2 = 1ULL * mint::mod() * mint::mod();
                    auto a0 = 1ULL * a[i + offset].val();
                    auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
                    auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
                    auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
                    auto a1na3imag =
                        1ULL * mint(a1 + mod2 - a3).val() * imag.val();
                    auto na2 = mod2 - a2;
                    a[i + offset] = a0 + a2 + a1 + a3;
                    a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
                    a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
                    a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
                }
                if (s + 1 != (1 << len))
                    rot *= info.rate3[countr_zero(~(unsigned int)(s))];
            }
            len += 2;
        }
    }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
    int n = int(a.size());
    int h = internal::countr_zero((unsigned int)n);

    static const fft_info<mint> info;

    int len = h;  // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
    while (len) {
        if (len == 1) {
            int p = 1 << (h - len);
            mint irot = 1;
            for (int s = 0; s < (1 << (len - 1)); s++) {
                int offset = s << (h - len + 1);
                for (int i = 0; i < p; i++) {
                    auto l = a[i + offset];
                    auto r = a[i + offset + p];
                    a[i + offset] = l + r;
                    a[i + offset + p] =
                        (unsigned long long)(mint::mod() + l.val() - r.val()) *
                        irot.val();
                    ;
                }
                if (s + 1 != (1 << (len - 1)))
                    irot *= info.irate2[countr_zero(~(unsigned int)(s))];
            }
            len--;
        } else {
            // 4-base
            int p = 1 << (h - len);
            mint irot = 1, iimag = info.iroot[2];
            for (int s = 0; s < (1 << (len - 2)); s++) {
                mint irot2 = irot * irot;
                mint irot3 = irot2 * irot;
                int offset = s << (h - len + 2);
                for (int i = 0; i < p; i++) {
                    auto a0 = 1ULL * a[i + offset + 0 * p].val();
                    auto a1 = 1ULL * a[i + offset + 1 * p].val();
                    auto a2 = 1ULL * a[i + offset + 2 * p].val();
                    auto a3 = 1ULL * a[i + offset + 3 * p].val();

                    auto a2na3iimag =
                        1ULL *
                        mint((mint::mod() + a2 - a3) * iimag.val()).val();

                    a[i + offset] = a0 + a1 + a2 + a3;
                    a[i + offset + 1 * p] =
                        (a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
                    a[i + offset + 2 * p] =
                        (a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) *
                        irot2.val();
                    a[i + offset + 3 * p] =
                        (a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *
                        irot3.val();
                }
                if (s + 1 != (1 << (len - 2)))
                    irot *= info.irate3[countr_zero(~(unsigned int)(s))];
            }
            len -= 2;
        }
    }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_naive(const std::vector<mint>& a,
                                    const std::vector<mint>& b) {
    int n = int(a.size()), m = int(b.size());
    std::vector<mint> ans(n + m - 1);
    if (n < m) {
        for (int j = 0; j < m; j++) {
            for (int i = 0; i < n; i++) {
                ans[i + j] += a[i] * b[j];
            }
        }
    } else {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                ans[i + j] += a[i] * b[j];
            }
        }
    }
    return ans;
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {
    int n = int(a.size()), m = int(b.size());
    int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
    a.resize(z);
    internal::butterfly(a);
    b.resize(z);
    internal::butterfly(b);
    for (int i = 0; i < z; i++) {
        a[i] *= b[i];
    }
    internal::butterfly_inv(a);
    a.resize(n + m - 1);
    mint iz = mint(z).inv();
    for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
    return a;
}

}  // namespace internal

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
    assert((mint::mod() - 1) % z == 0);

    if (std::min(n, m) <= 60) return convolution_naive(a, b);
    return internal::convolution_fft(a, b);
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(const std::vector<mint>& a,
                              const std::vector<mint>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
    assert((mint::mod() - 1) % z == 0);

    if (std::min(n, m) <= 60) return convolution_naive(a, b);
    return internal::convolution_fft(a, b);
}

template <unsigned int mod = 998244353,
          class T,
          std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    using mint = static_modint<mod>;

    int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
    assert((mint::mod() - 1) % z == 0);

    std::vector<mint> a2(n), b2(m);
    for (int i = 0; i < n; i++) {
        a2[i] = mint(a[i]);
    }
    for (int i = 0; i < m; i++) {
        b2[i] = mint(b[i]);
    }
    auto c2 = convolution(std::move(a2), std::move(b2));
    std::vector<T> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        c[i] = c2[i].val();
    }
    return c;
}

std::vector<long long> convolution_ll(const std::vector<long long>& a,
                                      const std::vector<long long>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    static constexpr unsigned long long MOD1 = 754974721;  // 2^24
    static constexpr unsigned long long MOD2 = 167772161;  // 2^25
    static constexpr unsigned long long MOD3 = 469762049;  // 2^26
    static constexpr unsigned long long M2M3 = MOD2 * MOD3;
    static constexpr unsigned long long M1M3 = MOD1 * MOD3;
    static constexpr unsigned long long M1M2 = MOD1 * MOD2;
    static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

    static constexpr unsigned long long i1 =
        internal::inv_gcd(MOD2 * MOD3, MOD1).second;
    static constexpr unsigned long long i2 =
        internal::inv_gcd(MOD1 * MOD3, MOD2).second;
    static constexpr unsigned long long i3 =
        internal::inv_gcd(MOD1 * MOD2, MOD3).second;
        
    static constexpr int MAX_AB_BIT = 24;
    static_assert(MOD1 % (1ull << MAX_AB_BIT) == 1, "MOD1 isn't enough to support an array length of 2^24.");
    static_assert(MOD2 % (1ull << MAX_AB_BIT) == 1, "MOD2 isn't enough to support an array length of 2^24.");
    static_assert(MOD3 % (1ull << MAX_AB_BIT) == 1, "MOD3 isn't enough to support an array length of 2^24.");
    assert(n + m - 1 <= (1 << MAX_AB_BIT));

    auto c1 = convolution<MOD1>(a, b);
    auto c2 = convolution<MOD2>(a, b);
    auto c3 = convolution<MOD3>(a, b);

    std::vector<long long> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        unsigned long long x = 0;
        x += (c1[i] * i1) % MOD1 * M2M3;
        x += (c2[i] * i2) % MOD2 * M1M3;
        x += (c3[i] * i3) % MOD3 * M1M2;
        // B = 2^63, -B <= x, r(real value) < B
        // (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
        // r = c1[i] (mod MOD1)
        // focus on MOD1
        // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
        // r = x,
        //     x - M' + (0 or 2B),
        //     x - 2M' + (0, 2B or 4B),
        //     x - 3M' + (0, 2B, 4B or 6B) (without mod!)
        // (r - x) = 0, (0)
        //           - M' + (0 or 2B), (1)
        //           -2M' + (0 or 2B or 4B), (2)
        //           -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
        // we checked that
        //   ((1) mod MOD1) mod 5 = 2
        //   ((2) mod MOD1) mod 5 = 3
        //   ((3) mod MOD1) mod 5 = 4
        long long diff =
            c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
        if (diff < 0) diff += MOD1;
        static constexpr unsigned long long offset[5] = {
            0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
        x -= offset[diff % 5];
        c[i] = x;
    }

    return c;
}

}  // namespace atcoder


#line 4 "Library/src/FormalPowerSeries/FPS.hpp"
namespace kyopro{

template <typename mint, atcoder::internal::is_modint_t<mint>* = nullptr>
struct FormalPowerSeries : public std::vector<mint> {
    using std::vector<mint>::vector;
    using FPS = FormalPowerSeries<mint>;

    void expand(size_t sz) {
        if (this->size() < sz) this->resize(sz);
    }

    void shrink() {
        while (!(*this).empty() && (*this).back().val() == 0) (*this).pop_back();
    }

    FPS pref(size_t sz) const {
        FPS g((*this).begin(), (*this).begin() + std::min(sz, this->size()));
        g.expand(sz);
        return g;
    }

    FPS& operator+=(const FPS& rhs) {
        expand(rhs.size());
        for (int i = 0; i < (int)rhs.size(); ++i) (*this)[i] += rhs[i];
        return (*this);
    }
    
    FPS& operator-=(const FPS& rhs) {
        expand(rhs.size());
        for (int i = 0; i < (int)rhs.size(); ++i) (*this)[i] -= rhs[i];
        return (*this);
    }
    FPS& operator*=(const FPS& rhs) {
        shrink();
        std::vector res = atcoder::convolution<mint>(*this, rhs);
        (*this) = {res.begin(), res.end()};
        return (*this);
    }

    FPS& operator+=(const mint& rhs) {
        expand(1);
        (*this)[0] += rhs;
        return (*this);
    }
    FPS& operator-=(const mint& rhs) {
        expand(1);
        (*this)[0] -= rhs;
        return (*this);
    }
    FPS& operator*=(const mint& rhs) {
        for (int i = 0; i < (int)this->size(); ++i) {
            (*this)[i] *= rhs;
        }
        return (*this);
    }
    FPS& operator/=(const mint& rhs) {
        const mint invr = rhs.inv();
        for (int i = 0; i < (int)this->size(); ++i) {
            (*this)[i] *= invr;
        }
        return (*this);
    }

    FPS operator+(const FPS& rhs) const { return FPS(*this) += rhs; }
    FPS operator-(const FPS& rhs) const { return FPS(*this) -= rhs; }
    FPS operator*(const FPS& rhs) const { return FPS(*this) *= rhs; }
    FPS operator+(const mint& rhs) const { return FPS(*this) += rhs; }
    FPS operator-(const mint& rhs) const { return FPS(*this) -= rhs; }
    FPS operator*(const mint& rhs) const { return FPS(*this) *= rhs; }
    FPS operator/(const mint& rhs) const { return FPS(*this) /= rhs; }
    FPS operator>>(int sz) const {
        if ((int)this->size() <= sz) return {};
        FPS ret(*this);
        ret.erase(ret.begin(), ret.begin() + sz);
        return ret;
    }
    FPS operator<<(int sz) const {
        FPS ret(*this);
        ret.insert(ret.begin(), sz, mint(0));
        return ret;
    }

    // 積分
    FPS integral() const {
        FPS res(this->size() + 1);
        for (int i = 0; i < (int)this->size(); ++i) {
            res[i + 1] = (*this)[i] * mint(i + 1).inv();
        }
        return res;
    }

    // 微分
    FPS prime() const {
        FPS res(this->size() - 1);
        for (int i = 1; i < (int)this->size(); ++i) {
            res[i - 1] = (*this)[i] * mint::raw(i);
        }
        return res;
    }

    // 逆元
    FPS inv(size_t sz = -1) const {
        assert(!(*this).empty() && (*this)[0] != mint());
        if (sz == -1) sz = this->size();

        FPS g{mint(1) / (*this)[0]};
        for (int d = 1; d < sz; d <<= 1) {
            g = (g * 2 - g * g * (*this).pref(2 * d)).pref(2 * d);
        }

        return g.pref(sz);
    }

    FPS& operator/=(const FPS& rhs) { return (*this) *= rhs.inv(); }
    FPS operator/(const FPS& rhs) const { return FPS(*this) *= rhs.inv(); }

    FPS log(size_t sz = -1) const {
        assert(!(this->empty()) && (*this)[0].val() == 1);
        if (sz == -1) sz = this->size();
        return ((*this).prime() * (*this).inv(sz - 1)).pref(sz - 1).integral();
    };

    FPS exp(size_t sz = -1) const {
        assert(!(this->empty()) && (*this)[0].val() == 0);
        if (sz == -1) sz = this->size();

        FPS g{mint::raw(1)};
        for (int d = 1; d < sz; d <<= 1) {
            g = (g * (FPS{mint::raw(1)} - g.log(2 * d) + (*this).pref(2 * d)))
                    .pref(2 * d);
        }
        return g;
    }

    FPS pow(long long e, size_t sz = -1) const {
        if (sz == -1) sz = this->size();
        if (e == 0) {
            FPS res(sz);
            if (sz) res[0] = mint::raw(1);
            return res;
        }

        int p = 0;
        while (p < (int)this->size() && (*this)[p].val() == 0) ++p;

        if (__int128_t(p) * e >= sz) {
            return FPS(sz);
        }

        mint vp = (*this)[p];
        FPS f = (*this >> p);
        f /= vp;
        f = (f.log(sz) * e).exp(sz);
        f *= vp.pow(e);
        f = (f << (p * e)).pref(sz);
        f.expand(sz);
        return f;
    }
};

};  // namespace kyopro

/**
 * @brief 形式的べき級数
*/
#line 1 "Library/src/debug.hpp"
#ifdef ONLINE_JUDGE
#define debug(x) void(0)
#else
#define _GLIBCXX_DEBUG
#define debug(x) std::cerr << __LINE__ << " : " << #x << " = " << (x) << std::endl
#endif
#line 2 "Library/src/stream.hpp"
#include <ctype.h>
#include <stdio.h>
#include <string>
#line 2 "Library/src/internal/type_traits.hpp"
#include <iostream>
#include <limits>
#line 5 "Library/src/internal/type_traits.hpp"
#include <typeinfo>
#include <cstdint>

namespace kyopro {
namespace internal {
template <typename... Args> struct first_enabled {};

template <typename T, typename... Args>
struct first_enabled<std::enable_if<true, T>, Args...> {
    using type = T;
};
template <typename T, typename... Args>
struct first_enabled<std::enable_if<false, T>, Args...>
    : first_enabled<Args...> {};
template <typename T, typename... Args> struct first_enabled<T, Args...> {
    using type = T;
};

template <typename... Args>
using first_enabled_t = typename first_enabled<Args...>::type;

template <int dgt, std::enable_if_t<dgt <= 128>* = nullptr> struct int_least {
    using type = first_enabled_t<std::enable_if<dgt <= 8, std::int8_t>,
                                 std::enable_if<dgt <= 16, std::int16_t>,
                                 std::enable_if<dgt <= 32, std::int32_t>,
                                 std::enable_if<dgt <= 64, std::int64_t>,
                                 std::enable_if<dgt <= 128, __int128_t>>;
};

template <int dgt, std::enable_if_t<dgt <= 128>* = nullptr> struct uint_least {
    using type = first_enabled_t<std::enable_if<dgt <= 8, std::uint8_t>,
                                 std::enable_if<dgt <= 16, std::uint16_t>,
                                 std::enable_if<dgt <= 32, std::uint32_t>,
                                 std::enable_if<dgt <= 64, std::uint64_t>,
                                 std::enable_if<dgt <= 128, __uint128_t>>;
};

template <int dgt> using int_least_t = typename int_least<dgt>::type;
template <int dgt> using uint_least_t = typename uint_least<dgt>::type;

template <typename T>
using double_size_uint_t = uint_least_t<2 * std::numeric_limits<T>::digits>;

template <typename T>
using double_size_int_t = int_least_t<2 * std::numeric_limits<T>::digits>;

struct modint_base {};
template <typename T> using is_modint = std::is_base_of<modint_base, T>;
template <typename T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;


// is_integral
template <typename T>
using is_integral_t =
    std::enable_if_t<std::is_integral_v<T> || std::is_same_v<T, __int128_t> ||
                   std::is_same_v<T, __uint128_t>>;
};  // namespace internal
};  // namespace kyopro

/*
 * @ref https://qiita.com/kazatsuyu/items/f8c3b304e7f8b35263d8
 */
#line 6 "Library/src/stream.hpp"

namespace kyopro {

inline void single_read(char& c) {
    c = getchar_unlocked();
    while (isspace(c)) c = getchar_unlocked();
}
template <typename T, internal::is_integral_t<T>* = nullptr>
inline void single_read(T& a) {
    a = 0;
    bool is_negative = false;
    char c = getchar_unlocked();
    while (isspace(c)) {
        c = getchar_unlocked();
    }
    if (c == '-') is_negative = true, c = getchar_unlocked();
    while (isdigit(c)) {
        a = 10 * a + (c - '0');
        c = getchar_unlocked();
    }
    if (is_negative) a *= -1;
}
template <typename T, internal::is_modint_t<T>* = nullptr>
inline void single_read(T& a) {
    long long x;
    single_read(x);
    a = T(x);
}
inline void single_read(std::string& str) noexcept {
    char c = getchar_unlocked();
    while (isspace(c)) c = getchar_unlocked();
    while (!isspace(c)) {
        str += c;
        c = getchar_unlocked();
    }
}
template<typename T>
inline void read(T& x) noexcept {single_read(x);}
template <typename Head, typename... Tail>
inline void read(Head& head, Tail&... tail) noexcept {
    single_read(head), read(tail...);
}

inline void single_write(char c) noexcept { putchar_unlocked(c); }
template <typename T, internal::is_integral_t<T>* = nullptr>
inline void single_write(T a) noexcept {
    if (!a) {
        putchar_unlocked('0');
        return;
    }
    if constexpr (std::is_signed_v<T>) {
        if (a < 0) putchar_unlocked('-'), a *= -1;
    }
    constexpr int d = std::numeric_limits<T>::digits10;
    char s[d + 1];
    int now = d + 1;
    while (a) {
        s[--now] = (char)'0' + a % 10;
        a /= 10;
    }
    while (now <= d) putchar_unlocked(s[now++]);
}
template <typename T, internal::is_modint_t<T>* = nullptr>
inline void single_write(T a) noexcept {
    single_write(a.val());
}
inline void single_write(const std::string& str) noexcept {
    for (auto c : str) {
        putchar_unlocked(c);
    }
}
template <typename T> inline void write(T x) noexcept { single_write(x); }
template <typename Head, typename... Tail>
inline void write(Head head, Tail... tail) noexcept {
    single_write(head);
    putchar_unlocked(' ');
    write(tail...);
}
template <typename... Args> inline void put(Args... x) noexcept {
    write(x...);
    putchar_unlocked('\n');
}
};  // namespace kyopro

/**
 * @brief 高速入出力
 */
#line 2 "Library/src/template.hpp"
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); i++)
#define all(x) std::begin(x), std::end(x)
#define popcount(x) __builtin_popcountll(x)
using i128 = __int128_t;
using ll = long long;
using ld = long double;
using graph = std::vector<std::vector<int>>;
using P = std::pair<int, int>;
constexpr int inf = std::numeric_limits<int>::max() / 2;
constexpr ll infl = std::numeric_limits<ll>::max() / 2;
const long double pi = acosl(-1);
constexpr uint64_t MOD = 1e9 + 7;
constexpr uint64_t MOD2 = 998244353;
constexpr int dx[] = {1, 0, -1, 0, 1, -1, -1, 1, 0};
constexpr int dy[] = {0, 1, 0, -1, 1, 1, -1, -1, 0};
template <typename T1, typename T2> constexpr inline bool chmax(T1& a, T2 b) {
    return a < b && (a = b, true);
}
template <typename T1, typename T2> constexpr inline bool chmin(T1& a, T2 b) {
    return a > b && (a = b, true);
}
#line 4 "Library/src/math/combination.hpp"
using namespace std;
namespace kyopro {

template <typename mint, int sz> class combination {
    const int M;
    mint fac[sz + 1], ifac[sz + 1];

public:
    combination() : M(std::min<int>(mint::mod(), sz)) {
        assert(mint::mod());
        fac[0] = mint(1), ifac[0] = mint(1), fac[1] = mint(1),
        ifac[1] = mint(1);

        for (int i = 2; i <= M; ++i) {
            fac[i] = fac[i - 1] * i;
        }

        ifac[M - 1] = mint(1) / fac[M - 1];
        for (int i = M - 2; i > 1; --i) {
            ifac[i] = ifac[i + 1] * (i + 1);
        }
    }

    constexpr mint fact(int n) const {
        assert(0 <= n && n <= sz);
        return fac[n];
    }
    constexpr mint ifact(int n) const {
        assert(0 <= n && n <= sz);
        return ifac[n];
    }

    constexpr mint binom(int n, int r) const {
        assert(n >= r);
        return fact(n) * ifact(r) * ifact(n - r);
    }
    constexpr mint perm(int n, int r) const {
        assert(n >= r);
        return fact(n) * ifact(n - r);
    }
};

};  // namespace kyopro

/**
 * @brief 二項係数
 */
#line 6 "a.cpp"

using namespace std;
using namespace kyopro;

using mint = atcoder::modint998244353;
using FPS = FormalPowerSeries<mint>;

combination<mint, (int)2e5> com;
int main() {
    int n;
    read(n);

    // [x^i] (e^nx)
    auto coeff_f = [&](int i) { return mint(n).pow(i) / com.fact(i); };
    auto coeff_g = [&](int i) { return com.binom(n, i); };

    int idx = n - 2;
    mint ans = 0;
    rep(i, idx + 1) ans += coeff_f(idx - i) * coeff_g(i);

    mint fac = mint::raw(1);
    for (int i = 1; i <= n - 2; ++i) fac *= mint::raw(i);

    ans *= fac;

    ans /= mint::raw(n).pow(n - 2);
    put(ans.val());
}
0